Metadata
Abstract
We show that the Fargues–Fontaine curve associated to an algebraically closed field of characteristic is geometrically simply connected; that is, its base extension from to any complete algebraically closed overfield admits no nontrivial connected finite étale covering. We then deduce from this an analogue for perfectoid spaces (and some related objects) of Drinfeld’s lemma on the fundamental group of a product of schemes in characteristic .
References
[Ber90] Spectral Theory and Analytic Geometry over Non-Archimedean Fields, Mathematical Surveys and Monographs, 33, American Mathematical Society, 1990 | MR | Zbl
[BGR84] Non-Archimedean Analysis. A systematic approach to rigid analytic geometry, Grundlehren der Mathematischen Wissenschaften, 261, Springer, 1984 | Zbl
[Bou07] Éléments de mathématique. Algèbre. Chapitres 4 à 7, Springer, 2007 | Zbl
[CD94] Modules différentielles sur les couronnes, Ann. Inst. Fourier, Volume 44 (1994) no. 3, pp. 663-701 | DOI | Zbl
[CKZ21] Drinfeld’s lemma for perfectoid spaces and overconvergence of multivariate -modules (2021) (https://arxiv.org/abs/1808.03964v4)
[CTT16] Morphisms of Berkovich curves and the different function, Adv. Math., Volume 303 (2016), pp. 800-858 | DOI | MR | Zbl
[Duc14] La Structure des Courbes Analytiques, 2014 (draft, available at https://webusers.imj-prg.fr/~antoine.ducros/livre.html)
[FF18] Courbes et fibrés vectoriels en théorie de Hodge -adique, Astérisque, 406, Société Mathématique de France, 2018 | Zbl
[Gro57] Sur la classification des fibrés holomorphes sur la sphère de Riemann, Am. J. Math., Volume 79 (1957), pp. 121-138 | DOI | Zbl
[HP04] Vector bundles with a Frobenius structure on the punctured unit disc, Compos. Math., Volume 140 (2004) no. 3, pp. 689-716 | DOI | MR | Zbl
[Hub96] Étale Cohomology of Rigid Analytic Varieties and Adic Spaces, Aspects of Mathematics, E30, Vieweg & Sohn, 1996 | MR | Zbl
[Kap42] Maximal fields with valuation, Duke Math. J., Volume 9 (1942), pp. 303-321 | MR | Zbl
[Kap45] Maximal fields with valuation. II, Duke Math. J., Volume 12 (1945), pp. 243-248 | MR | Zbl
[Ked04] A -adic local monodromy theorem, Ann. Math., Volume 160 (2004), pp. 93-184 | DOI | MR | Zbl
[Ked05] Slope filtrations revisited, Doc. Math., Volume 10 (2005), pp. 447-525 errata, ibid. 12 (2007), 361–362; additional errata at http://kskedlaya.org/papers/ | MR | Zbl
[Ked07] Swan conductors for -adic differential modules, I: A local construction, Algebra Number Theory, Volume 1 (2007) no. 3, pp. 269-300 | DOI | MR | Zbl
[Ked10] -adic Differential Equations, Cambridge Studies in Advanced Mathematics, 125, Cambridge University Press, 2010 | MR | Zbl
[Ked11] Swan conductors for -adic differential modules, II: Global variation, J. Inst. Math. Jussieu, Volume 10 (2011) no. 1, pp. 191-224 | DOI | MR | Zbl
[Ked15] Local and global structure of connections on nonarchimedean curves, Compos. Math., Volume 151 (2015) no. 6, pp. 1096-1156 | DOI | MR | Zbl
[Ked16a] Convergence polygons for connections on nonarchimedean curves, Nonarchimedean and Tropical Geometry. Based on two Simons Symposia, Island of St. John, March 31–April 6, 2013 and Puerto Rico, February 1–7, 2015 (Simons Symposia), Springer, 2016, pp. 51-97 | Zbl
[Ked16b] Noetherian properties of Fargues–Fontaine curves, Int. Math. Res. Not., Volume 2016 (2016) no. 8, 2544–2567 | MR | Zbl
[Ked19] Sheaves, stacks, and shtukas, Perfectoid Spaces: Lectures from the 2017 Arizona Winter School (Mathematical Surveys and Monographs), Volume 242, American Mathematical Society, 2019, pp. 58-205 (with an introduction by Peter Scholze) | Zbl
[KL15] Relative -adic Hodge theory: Foundations, Astérisque, 371, Société Mathématique de France, 2015 | Zbl
[KL19] Relative -adic Hodge theory, II: Imperfect period rings (2019) (https://arxiv.org/abs/1602.06899v3)
[Kra66] Prolongement analytique uniforme et multiforme dans les corps valués complets, Les Tendances Géométrique et Algébrique et Théorie des Nombres (Colloques Internationaux du Centre National de la Recherche Scientifique), Volume 143, Centre National de la Recherche Scientifique, 1966, pp. 97-141 | Zbl
[Kra74] Rapport sur le prolongement analytique dans les corps valués complets par la méthode des éléments analytique quasi-connexes, Bull. Soc. Math. Fr., Suppl., Mém., Volume 39–40 (1974), pp. 131-254 | Numdam | Zbl
[NS65] Stable and unitary vector bundles on a compact Riemann surface, Ann. Math., Volume 82 (1965), pp. 540-567 | DOI | MR | Zbl
[Sch12] Perfectoid spaces, Publ. Math., Inst. Hautes Étud. Sci., Volume 116 (2012), pp. 245-313 | DOI | Numdam | MR | Zbl
[Sch17] Étale cohomology of diamonds (2017) (preprint available at http://www.math.uni-bonn.de/people/scholze/EtCohDiamonds.pdf)
[Sta17] Stacks Project, 2017 http://stacks.math.columbia.edu (retrieved Nov 2017)
[SW20] Berkeley Lectures on -adic Geometry, Annals of Mathematics Studies, 207, Princeton University Press, 2020 | Zbl
[Tem17] Wild coverings of Berkovich curves, Actes de la conférence “Non-Archimedean analytic geometry: theory and practice” (Publications Mathématiques de Besançon. Algèbre et Théorie des Nombres), Volume 2017, Presses Universitaires de Franche-Comté, 2017 no. 1, pp. 127-135 | Numdam | MR | Zbl
[Wei17] as a geometric fundamental group, Int. Math. Res. Not., Volume 2017 (2017) no. 10, pp. 2964-2997 | MR | Zbl
[Wei19] Adic spaces, Perfectoid Spaces. Lectures from the 20th Arizona Winter School, University of Arizona, Tucson, AZ, USA, March 11–17, 2017 (Mathematical Surveys and Monographs), Volume 242, American Mathematical Society, 2019, pp. 14-57 (with an introduction by Peter Scholze) | MR | Zbl
[Xia10] On ramification filtrations and -adic differential equations, I: equal characteristic case, Algebra Number Theory, Volume 4 (2010) no. 8, pp. 969-1027 | DOI | Zbl
[Xia12] On ramification filtrations and -adic differential equations, II: mixed characteristic case, Compos. Math., Volume 148 (2012) no. 2, pp. 415-463 | DOI | MR | Zbl