Metadata
Abstract
We use partial actions, as formalized by Exel, to construct various commensurating actions. We use this in the context of groups piecewise preserving a geometric structure, and we interpret the transfixing property of these commensurating actions as the existence of a model for which the group acts preserving the geometric structure. We apply this to many piecewise groups in dimension 1, notably piecewise of class , piecewise affine, piecewise projective (possibly discontinuous).
We derive various conjugacy results for subgroups with Property FW, or distorted cyclic subgroups. For instance we obtain, under suitable assumptions, the conjugacy of a given piecewise affine action to an affine action on possibly another model. By the same method, we obtain a similar result in the projective case. An illustrating corollary is the fact that the group of piecewise projective self-transformations of the circle has no infinite subgroup with Kazhdan’s Property T; this corollary is new even in the piecewise affine case.
In addition, we use this to provide the classification of circle subgroups of piecewise projective homeomorphisms of the projective line. The piecewise affine case is a classical result of Minakawa.
References
[Aba99] Sobre ações parciais, fibrados de Fell e grupóides, Ph. D. Thesis, University of São Paulo, Brazil (1999)
[Aba03] Enveloping actions and Takai duality for partial actions, J. Funct. Anal., Volume 197 (2003) no. 1, pp. 14-67 | DOI | MR | Zbl
[Bet79] Die Projektivitätengruppe der Moulton–Ebenen, J. Geom., Volume 13 (1979) no. 2, pp. 197-209 | DOI | Zbl
[BFP98] Coadjoint orbits of the Virasoro algebra and the global Liouville equation, Int. J. Mod. Phys. A, Volume 13 (1998) no. 2, pp. 315-362 | DOI | MR | Zbl
[BPP95] Subsets close to invariant subsets for group actions, Proc. Am. Math. Soc., Volume 123 (1995) no. 8, pp. 2283-2295 | DOI | MR | Zbl
[BS85] Groups of piecewise linear homeomorphisms of the real line, Invent. Math., Volume 79 (1985) no. 3, pp. 485-498 | DOI | MR | Zbl
[BW82] Eine stückweise projektive topologische Gruppe im Zusammenhang mit den Moulton–Ebenen, Arch. Math., Volume 38 (1982) no. 3, pp. 280-285 | DOI | Zbl
[Cor15] Irreducible lattices, invariant means, and commensurating actions, Math. Z., Volume 279 (2015) no. 1-2, pp. 1-26 | DOI | MR | Zbl
[Cor16] Group actions with commensurated subsets, wallings and cubings (2016) (https://arxiv.org/abs/1302.5982v2)
[Cor19] Near actions (2019) (https://arxiv.org/abs/1901.05065)
[Cor21] Property FW and 1-dimensional piecewise groups, C. R. Math. Acad. Sci. Paris, Volume 359 (2021) no. 1, pp. 71-78 | DOI | MR | Zbl
[DFG13] Free groups of interval exchange transformations are rare, Groups Geom. Dyn., Volume 7 (2013) no. 4, pp. 883-910 | DOI | MR | Zbl
[DFG20] Solvable groups of interval exchange transformations, Ann. Fac. Sci. Toulouse, Math., Volume 29 (2020) no. 3, pp. 595-618 | DOI | MR | Zbl
[DN90] Measured foliations on nonorientable surfaces, Ann. Sci. Éc. Norm. Supér., Volume 23 (1990) no. 3, pp. 469-494 | DOI | Numdam | MR | Zbl
[Exe98] Partial actions of groups and actions of inverse semigroups, Proc. Am. Math. Soc., Volume 126 (1998) no. 12, pp. 3481-3494 | DOI | MR | Zbl
[FH74] Distances hilbertiennes invariantes sur un espace homogène, Ann. Inst. Fourier, Volume 24 (1974) no. 3, pp. 171-217 | DOI | Numdam | Zbl
[GHW05] The Novikov conjecture for linear groups, Publ. Math., Inst. Hautes Étud. Sci., Volume 101 (2005), pp. 243-268 | DOI | Numdam | MR | Zbl
[Ghy92] Déformations de flots d’Anosov et de groupes fuchsiens, Ann. Inst. Fourier, Volume 41 (1992) no. 1-2, pp. 209-247 | DOI | Zbl
[GL19] Distortion in groups of affine interval exchange transformations, Groups Geom. Dyn., Volume 13 (2019) no. 3, pp. 795-819 | DOI | MR | Zbl
[Gol80] Discontinuous groups and the Euler class, Ph. D. Thesis, Univ. California Berkeley, USA (1980)
[Gol09] Projective geometry on manifolds, 2009 (http://www.math.umd.edu/~wmg/pgom.pdf)
[Gor04] The cobordism group of Möbius manifolds of dimension 1 is trivial, Topology Appl., Volume 143 (2004) no. 1-3, pp. 75-85 | DOI | Zbl
[Gre87] Pseudogroups of piecewise projective homeomorphisms, Pac. J. Math., Volume 129 (1987) no. 1, pp. 67-75 | DOI | MR | Zbl
[Gui96] Nombre de rotation, structures géométriques sur un cercle et groupe de Bott–Virasoro, Ann. Inst. Fourier, Volume 46 (1996) no. 4, pp. 971-1009 | DOI | Numdam | MR | Zbl
[Hag07] Isometries of CAT(0) cube complexes are semi-simple (2007) (https://arxiv.org/abs/0705.3386v1)
[HL14] Dynamique des échanges d’intervalles des groupes de Higman–Thompson , Ann. Inst. Fourier, Volume 64 (2014) no. 4, pp. 1477-1491 | DOI | Numdam | Zbl
[Imb97] Sur l’isomorphisme du groupe de Richard Thompson avec le groupe de Ptolémée, Geometric Galois actions. 2. The inverse Galois problem, moduli spaces and mapping class groups. Proceedings of the conference on geometry and arithmetic of moduli spaces, Luminy, France, August 1995 (London Mathematical Society Lecture Note Series), Volume 243, Cambridge University Press, 1997, pp. 313-324 | MR | Zbl
[JdlS15] Invariant means for the wobbling group, Bull. Belg. Math. Soc. Simon Stevin, Volume 22 (2015) no. 2, pp. 281-290 | MR | Zbl
[Kea75] Interval exchange transformations, Math. Z., Volume 141 (1975) no. 1, pp. 25-31 | DOI | MR | Zbl
[KL04] Partial actions of groups, Int. J. Algebra Comput., Volume 14 (2004) no. 1, pp. 87-114 | DOI | MR | Zbl
[Kui53] Sur les surfaces localement affines, Géométrie différentielle. Colloques Internationaux du Centre National de la Recherche Scientifique, Strasbourg, 1953, Centre National de la Recherche Scientifique, 1953, pp. 79-87 | Zbl
[Kui54] Locally projective spaces of dimension one, Mich. Math. J., Volume 2 (1954), pp. 95-97 | MR | Zbl
[LBT20] Property FW, differentiable structures, and smoothability of singular actions, J. Topol., Volume 13 (2020) no. 3, pp. 1119-1138 | DOI | MR | Zbl
[LM16] A nonamenable finitely presented group of piecewise projective homeomorphisms, Groups Geom. Dyn., Volume 10 (2016) no. 1, pp. 177-200 | DOI | MR | Zbl
[LP76] Normal forms and versal deformations for Hill’s equation, Funct. Anal. Appl., Volume 9 (1976) no. 4, pp. 306-311 translation from Funkts. Anal. Prilozh. 9, No. 4, 41-48 (1975) | DOI | MR | Zbl
[Löw80] Projectivities and the geometric structure of topological planes, Geometry—von Staudt’s point of view (Proc. NATO Adv. Study Inst., Bad Windsheim, 1980) (NATO Adv. Study Inst. Ser. C: Math. Phys. Sci.), Volume 70, Reidel Publishing Company (1980), pp. 339-372 | Zbl
[Mar91] Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 17, Springer, 1991 | Zbl
[Meg86] Imbedding of topological spaces in spaces with strong properties of homogeneity, Soobshch. Akad. Nauk Gruz. SSR, Volume 121 (1986) no. 2, pp. 257-260 | MR | Zbl
[Meg00] Groupoid preactions by partial homeomorphisms and homogenizations, Categorical Methods in Algebra and Topology (Herrlich, H. H. ans Porst, ed.) (CatMAT 2000), Volume 54, Mathematik-Arbeitspapiere, 2000, pp. 279-292
[Min97] Classification of exotic circles of , Hokkaido Math. J., Volume 26 (1997) no. 3, pp. 685-697 | MR | Zbl
[Mon13] Groups of piecewise projective homeomorphisms, Proc. Natl. Acad. Sci. USA, Volume 110 (2013) no. 12, pp. 4524-4527 | DOI | MR | Zbl
[Mor15] Introduction to arithmetic groups, Deductive Press, 2015 | Zbl
[Mos55] Self-Adjoint Groups, Ann. Math., Volume 62 (1955) no. 1, pp. 44-55 | DOI | MR | Zbl
[Neu54] Groups covered by finitely many cosets, Publ. Math., Volume 3 (1954), pp. 227-242 | MR | Zbl
[Neu76] The structure of finitary permutation groups, Arch. Math., Volume 27 (1976) no. 1, pp. 3-17 | DOI | MR | Zbl
[Nov09] Discontinuity-growth of interval-exchange maps, J. Mod. Dyn., Volume 3 (2009) no. 3, pp. 379-405 | DOI | MR | Zbl
[Seg81] Unitary representations of some infinite-dimensional groups, Commun. Math. Phys., Volume 80 (1981) no. 3, pp. 301-342 | DOI | MR | Zbl
[Ser03] Versions combinatoires de . Groupes de Thompson, 2003 Prépublication de l’Institut Fourier Vol. (2003)
[Spe50] Endenverbände von Räumen und Gruppen, Math. Ann., Volume 122 (1950), pp. 167-174 | DOI | MR | Zbl
[Ste92] Groups of piecewise linear homeomorphisms, Trans. Am. Math. Soc., Volume 332 (1992) no. 2, pp. 477-514 | DOI | MR | Zbl
[Ste03] Partial actions of groups on cell complexes, Monatsh. Math., Volume 138 (2003) no. 2, pp. 159-170 | DOI | MR | Zbl
[Str77] Der von Staudtsche Standpunkt in lokal kompakten Geometrien, Math. Z., Volume 155 (1977) no. 1, pp. 11-21 | DOI | MR | Zbl