Commensurating actions for groups of piecewise continuous transformations
Annales Henri Lebesgue, Volume 4 (2021), pp. 1457-1520.

Metadata

KeywordsPiecewise linear transformations, Thompson groups, commensurating actions, partial actions, Property FW, geometric structures, affine 1-manifolds, projective 1-manifolds

Abstract

We use partial actions, as formalized by Exel, to construct various commensurating actions. We use this in the context of groups piecewise preserving a geometric structure, and we interpret the transfixing property of these commensurating actions as the existence of a model for which the group acts preserving the geometric structure. We apply this to many piecewise groups in dimension 1, notably piecewise of class 𝒞 k , piecewise affine, piecewise projective (possibly discontinuous).

We derive various conjugacy results for subgroups with Property FW, or distorted cyclic subgroups. For instance we obtain, under suitable assumptions, the conjugacy of a given piecewise affine action to an affine action on possibly another model. By the same method, we obtain a similar result in the projective case. An illustrating corollary is the fact that the group of piecewise projective self-transformations of the circle has no infinite subgroup with Kazhdan’s Property T; this corollary is new even in the piecewise affine case.

In addition, we use this to provide the classification of circle subgroups of piecewise projective homeomorphisms of the projective line. The piecewise affine case is a classical result of Minakawa.


References

[Aba99] Abadie, Fernando Sobre ações parciais, fibrados de Fell e grupóides (1999) (Ph. D. Thesis)

[Aba03] Abadie, Fernando Enveloping actions and Takai duality for partial actions, J. Funct. Anal., Volume 197 (2003) no. 1, pp. 14-67 | Article | MR 1957674 | Zbl 1036.46037

[Bet79] Betten, Dieter Die Projektivitätengruppe der Moulton–Ebenen, J. Geom., Volume 13 (1979) no. 2, pp. 197-209 | Article | Zbl 0426.51009

[BFP98] Balog, János; Fehér, László M.; Palla, László Coadjoint orbits of the Virasoro algebra and the global Liouville equation, Int. J. Mod. Phys. A, Volume 13 (1998) no. 2, pp. 315-362 | Article | MR 1605715 | Zbl 0923.17025

[BPP95] Brailovsky, Leonid; Pasechnik, Dmitrii V.; Praeger, Cheryl E. Subsets close to invariant subsets for group actions, Proc. Am. Math. Soc., Volume 123 (1995) no. 8, pp. 2283-2295 | Article | MR 1307498 | Zbl 0843.20005

[BS85] Brin, Matthew G.; Squier, Craig G. Groups of piecewise linear homeomorphisms of the real line, Invent. Math., Volume 79 (1985) no. 3, pp. 485-498 | Article | MR 782231 | Zbl 0563.57022

[BW82] Betten, Dieter; Wagner, Alan Eine stückweise projektive topologische Gruppe im Zusammenhang mit den Moulton–Ebenen, Arch. Math., Volume 38 (1982) no. 3, pp. 280-285 | Article | Zbl 0457.51021

[Cor15] Cornulier, Yves Irreducible lattices, invariant means, and commensurating actions, Math. Z., Volume 279 (2015) no. 1-2, pp. 1-26 | Article | MR 3299841 | Zbl 1311.43001

[Cor16] Cornulier, Yves Group actions with commensurated subsets, wallings and cubings (2016) (https://arxiv.org/abs/1302.5982v2)

[Cor19] Cornulier, Yves Near actions (2019) (https://arxiv.org/abs/1901.05065)

[Cor21] Cornulier, Yves Property FW and 1-dimensional piecewise groups, C. R. Math. Acad. Sci. Paris, Volume 359 (2021) no. 1, pp. 71-78 | Article | MR 4229039 | Zbl 07319290

[DFG13] Dahmani, François; Fujiwara, Koji; Guirardel, Vincent Free groups of interval exchange transformations are rare, Groups Geom. Dyn., Volume 7 (2013) no. 4, pp. 883-910 | Article | MR 3134029 | Zbl 1371.37075

[DFG20] Dahmani, François; Fujiwara, Koji; Guirardel, Vincent Solvable groups of interval exchange transformations, Ann. Fac. Sci. Toulouse, Math., Volume 29 (2020) no. 3, pp. 595-618 | Article | MR 4196698 | Zbl 1458.37054

[DN90] Danthony, Claude; Nogueira, Arnaldo Measured foliations on nonorientable surfaces, Ann. Sci. Éc. Norm. Supér., Volume 23 (1990) no. 3, pp. 469-494 | Article | Numdam | MR 1055445 | Zbl 0722.57010

[Exe98] Exel, Ruy Partial actions of groups and actions of inverse semigroups, Proc. Am. Math. Soc., Volume 126 (1998) no. 12, pp. 3481-3494 | Article | MR 1469405 | Zbl 0910.46041

[FH74] Faraut, Jacques; Harzallah, Khelifa Distances hilbertiennes invariantes sur un espace homogène, Ann. Inst. Fourier, Volume 24 (1974) no. 3, pp. 171-217 | Article | Numdam | Zbl 0265.43013

[GHW05] Guentner, Erik; Higson, Nigel; Weinberger, Shmuel The Novikov conjecture for linear groups, Publ. Math., Inst. Hautes Étud. Sci., Volume 101 (2005), pp. 243-268 | Article | Numdam | MR 2217050 | Zbl 1073.19003

[Ghy92] Ghys, Étienne Déformations de flots d’Anosov et de groupes fuchsiens, Ann. Inst. Fourier, Volume 41 (1992) no. 1-2, pp. 209-247 | Article | Zbl 0759.58036

[GL19] Guelman, Nancy; Liousse, Isabelle Distortion in groups of affine interval exchange transformations, Groups Geom. Dyn., Volume 13 (2019) no. 3, pp. 795-819 | Article | MR 4002218 | Zbl 1428.37039

[Gol80] Goldman, William M. Discontinuous groups and the Euler class (1980) (Ph. D. Thesis)

[Gol09] Goldman, William M. Projective geometry on manifolds, 2009 (http://www.math.umd.edu/~wmg/pgom.pdf)

[Gor04] Gorinov, Alewei G. The cobordism group of Möbius manifolds of dimension 1 is trivial, Topology Appl., Volume 143 (2004) no. 1-3, pp. 75-85 | Article | Zbl 1127.57009

[Gre87] Greenberg, P. Pseudogroups of C 1 piecewise projective homeomorphisms, Pac. J. Math., Volume 129 (1987) no. 1, pp. 67-75 | Article | MR 901257 | Zbl 0592.58055

[Gui96] Guieu, Laurent Nombre de rotation, structures géométriques sur un cercle et groupe de Bott–Virasoro, Ann. Inst. Fourier, Volume 46 (1996) no. 4, pp. 971-1009 | Article | Numdam | MR 1415954 | Zbl 0853.17022

[Hag07] Haglund, Frédéric Isometries of CAT(0) cube complexes are semi-simple (2007) (https://arxiv.org/abs/0705.3386v1)

[HL14] Hmili, Hadda; Liousse, Isabelle Dynamique des échanges d’intervalles des groupes de Higman–Thompson V r,m , Ann. Inst. Fourier, Volume 64 (2014) no. 4, pp. 1477-1491 | Article | Numdam | Zbl 1328.37037

[Imb97] Imbert, Michel Sur l’isomorphisme du groupe de Richard Thompson avec le groupe de Ptolémée, Geometric Galois actions. 2. The inverse Galois problem, moduli spaces and mapping class groups. Proceedings of the conference on geometry and arithmetic of moduli spaces, Luminy, France, August 1995 (London Mathematical Society Lecture Note Series), Volume 243, Cambridge University Press, 1997, pp. 313-324 | MR 1653017 | Zbl 0911.20031

[JdlS15] Juschenko, Kate; de la Salle, Mikael Invariant means for the wobbling group, Bull. Belg. Math. Soc. Simon Stevin, Volume 22 (2015) no. 2, pp. 281-290 | MR 3351042 | Zbl 1322.43001

[Kea75] Keane, Michael Interval exchange transformations, Math. Z., Volume 141 (1975) no. 1, pp. 25-31 | Article | MR 357739 | Zbl 0278.28010

[KL04] Kellendonk, Johannes; Lawson, Mark V. Partial actions of groups, Int. J. Algebra Comput., Volume 14 (2004) no. 1, pp. 87-114 | Article | MR 2041539 | Zbl 1056.20047

[Kui53] Kuiper, Nicolaas H. Sur les surfaces localement affines, Géométrie différentielle. Colloques Internationaux du Centre National de la Recherche Scientifique, Strasbourg, 1953, Centre National de la Recherche Scientifique, 1953, pp. 79-87 | Zbl 0053.13003

[Kui54] Kuiper, Nicolaas H. Locally projective spaces of dimension one, Mich. Math. J., Volume 2 (1954), pp. 95-97 | MR 64443 | Zbl 0058.16103

[LBT20] Lodha, Yash; Bon, Nicolás Matte; Triestino, Michele Property FW, differentiable structures, and smoothability of singular actions, J. Topol., Volume 13 (2020) no. 3, pp. 1119-1138 | Article | MR 4100128 | Zbl 07197506

[LM16] Lodha, Yash; Moore, Justin T. A nonamenable finitely presented group of piecewise projective homeomorphisms, Groups Geom. Dyn., Volume 10 (2016) no. 1, pp. 177-200 | Article | MR 3460335 | Zbl 1336.43001

[LP76] Lazutkin, Vladimir F.; Pankratova, T. Normal forms and versal deformations for Hill’s equation, Funct. Anal. Appl., Volume 9 (1976) no. 4, pp. 306-311 translation from Funkts. Anal. Prilozh. 9, No. 4, 41-48 (1975) | Article | MR 467828 | Zbl 0357.34021

[Löw80] Löwen, Rainer Projectivities and the geometric structure of topological planes, Geometry—von Staudt’s point of view (Proc. NATO Adv. Study Inst., Bad Windsheim, 1980) (NATO Adv. Study Inst. Ser. C: Math. Phys. Sci.), Volume 70 (1980), pp. 339-372 | Zbl 0458.51015

[Mar91] Margulis, GrigoriÄ­ Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 17, Springer, 1991 | Zbl 0732.22008

[Meg86] Megrelishvili, Michael G. Imbedding of topological spaces in spaces with strong properties of homogeneity, Soobshch. Akad. Nauk Gruz. SSR, Volume 121 (1986) no. 2, pp. 257-260 | MR 863399 | Zbl 0609.54011

[Meg00] Megrelishvili, Michael G. Groupoid preactions by partial homeomorphisms and homogenizations, Categorical Methods in Algebra and Topology (Herrlich, H. H. ans Porst, ed.) (CatMAT 2000), Volume 54, Mathematik-Arbeitspapiere, 2000, pp. 279-292

[Min97] Minakawa, Hiroyuki Classification of exotic circles of PL + (S 1 ), Hokkaido Math. J., Volume 26 (1997) no. 3, pp. 685-697 | MR 1483467 | Zbl 0896.57024

[Mon13] Monod, Nicolas Groups of piecewise projective homeomorphisms, Proc. Natl. Acad. Sci. USA, Volume 110 (2013) no. 12, pp. 4524-4527 | Article | MR 3047655 | Zbl 1305.57002

[Mor15] Morris, Davis W. Introduction to arithmetic groups, Deductive Press, 2015 | Zbl 1319.22007

[Mos55] Mostow, George D. Self-Adjoint Groups, Ann. Math., Volume 62 (1955) no. 1, pp. 44-55 | Article | MR 69830 | Zbl 0065.01404

[Neu54] Neumann, Bernhard H. Groups covered by finitely many cosets, Publ. Math., Volume 3 (1954), pp. 227-242 | MR 72138 | Zbl 0057.25603

[Neu76] Neumann, Peter M. The structure of finitary permutation groups, Arch. Math., Volume 27 (1976) no. 1, pp. 3-17 | Article | MR 401928 | Zbl 0324.20037

[Nov09] Novak, Christopher F. Discontinuity-growth of interval-exchange maps, J. Mod. Dyn., Volume 3 (2009) no. 3, pp. 379-405 | Article | MR 2538474 | Zbl 1183.37077

[Seg81] Segal, Graeme Unitary representations of some infinite-dimensional groups, Commun. Math. Phys., Volume 80 (1981) no. 3, pp. 301-342 | Article | MR 626704 | Zbl 0495.22017

[Ser03] Sergiescu, Vlad Versions combinatoires de Diff(S 1 ). Groupes de Thompson, 2003 Prépublication de l’Institut Fourier Vol. 630 (2003)

[Spe50] Specker, Ernst Endenverbände von Räumen und Gruppen, Math. Ann., Volume 122 (1950), pp. 167-174 | Article | MR 38984 | Zbl 0045.43904

[Ste92] Stein, Melanie Groups of piecewise linear homeomorphisms, Trans. Am. Math. Soc., Volume 332 (1992) no. 2, pp. 477-514 | Article | MR 1094555 | Zbl 0798.20025

[Ste03] Steinberg, Benjamin Partial actions of groups on cell complexes, Monatsh. Math., Volume 138 (2003) no. 2, pp. 159-170 | Article | MR 1964463 | Zbl 1022.57002

[Str77] Strambach, Karl Der von Staudtsche Standpunkt in lokal kompakten Geometrien, Math. Z., Volume 155 (1977) no. 1, pp. 11-21 | Article | MR 470812 | Zbl 0354.50004