Metadata
Abstract
Jacobians of degenerating families of curves are well-understood over 1-dimensional bases due to work of Néron and Raynaud; the fundamental tool is the Néron model and its description via the Picard functor. Over higher-dimensional bases Néron models typically do not exist, but in this paper we construct a universal base change after which a Néron model of the universal jacobian does exist. This yields a new partial compactification of the moduli space of curves, and of the universal jacobian over it. The map is separated and relatively representable. The Néron model is separated and has a group law extending that on the jacobian. We show that Caporaso’s balanced Picard stack acquires a torsor structure after pullback to a certain open substack of .
References
[BH16] Fine compactified moduli of enriched structures on stable curves (2016) (https://arxiv.org/abs/1607.08835v1)
[BLR90] Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 21, Springer, 1990 | DOI | Zbl
[Cap08] Néron models and compactified Picard schemes over the moduli stack of stable curves, Am. J. Math., Volume 130 (2008) no. 1, pp. 1-47 | DOI | MR | Zbl
[Chi15] Néron models of Pic via Pic (2015) (http://arxiv.org/abs/1509.06483)
[DM69] The irreducibility of the space of curves of given genus, Publ. Math., Inst. Hautes Étud. Sci. (1969) no. 36, pp. 75-109 | DOI | Numdam | MR | Zbl
[Est01] Compactifying the relative Jacobian over families of reduced curves, Trans. Am. Math. Soc., Volume 353 (2001) no. 8, pp. 3045-3095 | DOI | MR | Zbl
[Ful93] Introduction to toric varieties. The 1989 William H. Roever lectures in geometry, Annals of Mathematics Studies, Princeton University Press, 1993 no. 131 | Zbl
[Hol17] Quasi-compactness of Néron models, and an application to torsion points, Manuscr. Math., Volume 153 (2017) no. 3-4, pp. 323-330 | DOI | MR | Zbl
[Hol19] Néron models of jacobians over base schemes of dimension greater than 1, J. Reine Angew. Math., Volume 747 (2019), pp. 109-145 | DOI | MR | Zbl
[Hol21] Extending the double ramification cycle by resolving the Abel–Jacobi map, J. Inst. Math. Jussieu, Volume 20 (2021) no. 1, pp. 331-359 | DOI | MR | Zbl
[Jon96] Smoothness, semi-stability and alterations, Publ. Math., Inst. Hautes Étud. Sci., Volume 83 (1996), pp. 51-93 | Numdam | MR | Zbl
[Knu83] The projectivity of the moduli space of stable curves. II. The stacks , Math. Scand., Volume 52 (1983) no. 2, pp. 161-199 | DOI | MR | Zbl
[KP19] The stability space of compactified universal Jacobians, Trans. Am. Math. Soc., Volume 372 (2019) no. 7, pp. 4851-4887 | DOI | MR | Zbl
[Liu02] Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, 6, Oxford University Press, 2002 (translated from the French by Reinie Erné, Oxford Science Publications) | MR | Zbl
[Mai98] Moduli space of enriched stable curves, Ph. D. Thesis, Harvard University, USA (1998) | MR
[Mel09] Compactified Picard stacks over the moduli space of curves with marked points, Ph. D. Thesis, (Università degli Studi Roma Tre, Roma, Italia (2009)
[Sta13] Stacks Project, 2013 (http://stacks.math.columbia.edu)