Metadata
Abstract
We classify pairs consisting of a complex K3 surface and a finite group such that the subgroup consisting of symplectic automorphisms is among the maximal symplectic ones as classified by Mukai.
References
[AC91] An algebraic classification of the three-dimensional crystallographic groups, Adv. Appl. Math., Volume 12 (1991) no. 1, pp. 1-21 | DOI | MR | Zbl
[AST11] surfaces with non-symplectic automorphisms of prime order. With an appendix by Shigeyuki Kondō, Math. Z., Volume 268 (2011) no. 1-2, pp. 507-533 | DOI | MR | Zbl
[BEO02] A millennium project: constructing small groups, Int. J. Algebra Comput., Volume 12 (2002) no. 5, pp. 623-644 | DOI | MR | Zbl
[BH19] Extensions of maximal symplectic actions on K3 surfaces (2019) (https://arxiv.org/abs/1910.05952)
[BHPVdV04] Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 4, Springer, 2004 | MR | Zbl
[BR75] On the Torelli problem for kählerian K3 surfaces, Ann. Sci. Éc. Norm. Supér., Volume 8 (1975) no. 2, pp. 235-273 | DOI | MR | Zbl
[BS] Private communication
[BS19] K3 surfaces with maximal finite automorphism groups containing (2019) (https://arxiv.org/abs/1910.05955)
[CS99] Sphere packings, lattices and groups, Grundlehren der Mathematischen Wissenschaften, 290, Springer, 1999 | MR | Zbl
[Dev19] SageMath, the Sage Mathematics Software System, 2019 (version 8.9), https://www.sagemath.org
[DGPS19] Singular 4-1-2 — A computer algebra system for polynomial computations, http://www.singular.uni-kl.de, 2019
[Elk] Private communication
[Fra11] Classification of -surfaces with involution and maximal symplectic symmetry, Math. Ann., Volume 350 (2011) no. 4, pp. 757-791 | DOI | MR | Zbl
[Gro19] GAP – Groups, Algorithms, and Programming,, 2019 (version 4.10.2, https://www.gap-system.org)
[Has11] Period map of a certain family with an -action, J. Reine Angew. Math., Volume 652 (2011), pp. 1-65 (With an appendix by Tomohide Terasoma) | DOI | MR | Zbl
[Has12] Finite symplectic actions on the lattice, Nagoya Math. J., Volume 206 (2012), pp. 99-153 | DOI | MR | Zbl
[HM16] The 290 fixed-point sublattices of the Leech lattice, J. Algebra, Volume 448 (2016), pp. 618-637 | DOI | MR | Zbl
[Huy16] Lectures on K3 surfaces, Cambridge Studies in Advanced Mathematics, 158, Cambridge University Press, 2016 | DOI | MR | Zbl
[KK01] The automorphism groups of Kummer surfaces associated with the product of two elliptic curves, Trans. Am. Math. Soc., Volume 353 (2001) no. 4, pp. 1469-1487 | DOI | MR | Zbl
[Kon86] Enriques surfaces with finite automorphism groups, Jpn. J. Math., New Ser., Volume 12 (1986) no. 2, pp. 191-282 | DOI | MR | Zbl
[Kon98] Niemeier lattices, Mathieu groups, and finite groups of symplectic automorphisms of surfaces. With an appendix by Mukai, Shigeru, Duke Math. J., Volume 92 (1998) no. 3, pp. 593-603 | Zbl
[Kon99] The maximum order of finite groups of automorphisms of surfaces, Am. J. Math., Volume 121 (1999) no. 6, pp. 1245-1252 | DOI | MR | Zbl
[Kon06] Maximal subgroups of the Mathieu group and symplectic automorphisms of supersingular surfaces, Int. Math. Res. Not. (2006), 71517 | DOI | MR | Zbl
[Kon18] A survey of finite groups of symplectic automorphisms of surfaces, J. Phys. A, Math. Theor., Volume 51 (2018) no. 5, 053003 | DOI | MR | Zbl
[KOZ07] Extensions of the alternating group of degree 6 in the geometry of surfaces, Eur. J. Comb., Volume 28 (2007) no. 2, pp. 549-558 | DOI | MR | Zbl
[MO14] Finite groups of automorphisms of Enriques surfaces and the Mathieu group (2014) (https://arxiv.org/abs/1410.7535)
[Muk88] Finite groups of automorphisms of K3 surfaces and the Mathieu group, Invent. Math., Volume 94 (1988) no. 1, pp. 183-221 | DOI | MR | Zbl
[Nik79a] Finite groups of automorphisms of Kählerian surfaces of type , Tr. Mosk. Mat. O.-va, Volume 38 (1979), pp. 75-137 | MR | Zbl
[Nik79b] Integer symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 43 (1979) no. 1, p. 111-177, 238 | MR
[Oha] Private communication
[OZ02] The simple group of order 168 and K3 surfaces, Complex geometry. Collection of papers dedicated to Hans Grauert on the occasion of his 70th birthday, Springer, 2002, pp. 165-184 | Zbl
[PAR18] PARI/GP version 2.11.1, 2018 (available from http://pari.math.u-bordeaux.fr/)
[PS97] Computing isometries of lattices, J. Symb. Comput., Volume 24 (1997) no. 3-4, pp. 327-334 | DOI | MR | Zbl
[PTvdV92] The Hasse zeta function of a K3-surface related to the number of words of weight 5 in the Melas codes, J. Reine Angew. Math., Volume 432 (1992), pp. 151-176 | MR | Zbl
[PŠŠ71] Torelli’s theorem for algebraic surfaces of type , Izv. Akad. Nauk SSSR, Ser. Mat., Volume 35 (1971), pp. 530-572 | MR
[Shi16] The automorphism groups of certain singular surfaces and an Enriques surface, K3 surfaces and their moduli, Basel: Birkhäuser/Springer, 2016, pp. 297-343 | DOI | Zbl
[Shi20] The elliptic modular surface of level 4 and its reduction modulo 3, Ann. Mat. Pura Appl., Volume 199 (2020) no. 4, pp. 1457-1489 | DOI | MR | Zbl
[Smi07] Picard-Fuchs Differential Equations for Families of K3 Surfaces (2007) (https://arxiv.org/abs/0705.3658)
[Tod80] Applications of the Kähler–Einstein–Calabi–Yau metric to moduli of surfaces, Invent. Math., Volume 61 (1980) no. 3, pp. 251-265 | DOI | MR | Zbl
[Uji13] The automorphism group of the singular surface of discriminant 7, Comment. Math. Univ. St. Pauli, Volume 62 (2013) no. 1, pp. 11-29 | MR | Zbl