High frequency limits for invariant Ruelle densities
Annales Henri Lebesgue, Volume 4 (2021) , pp. 81-119.

Metadata

KeywordsRuelle resonances, quantum ergodicity, semi-classical measures

Abstract

We establish an equidistribution result for Ruelle resonant states on compact locally symmetric spaces of rank 1. More precisely, we prove that among the first band Ruelle resonances there is a density one subsequence such that the respective products of resonant and co-resonant states converge weakly to the Liouville measure. We prove this result by establishing an explicit quantum-classical correspondence between eigenspaces of the scalar Laplacian and the resonant states of the first band of Ruelle resonances, which also leads to a new description of Patterson–Sullivan distributions.


References

[AZ07] Anantharaman, Nalini; Zelditch, Steven Patterson–Sullivan distributions and quantum ergodicity, Ann. Henri Poincaré, Volume 8 (2007) no. 2, pp. 361-426 | Article | MR 2314452 | Zbl 1187.81175

[BL07] Butterley, Oliver; Liverani, Carlangelo Smooth Anosov flows: Correlation spectra and stability, J. Mod. Dyn., Volume 1 (2007) no. 2, pp. 301-322 | Article | MR 2285731 | Zbl 1144.37011

[BS87] Ban, Erik Peter van den; Schlichtkrull, Henrik Asymptotic expansions and boundary values of eigenfunctions on Riemannian symmetric spaces, J. Reine Angew. Math., Volume 380 (1987), pp. 108-165 | MR 916202 | Zbl 0631.58028

[CdV85] Colin de Verdière, Yves Ergodicité et fonctions propres du laplacien, Commun. Math. Phys., Volume 102 (1985) no. 3, pp. 497-502 | Article | Numdam | Zbl 0576.58032

[Cos05] Cosentino, Salvatore A note on Hölder regularity of invariant distributions for horocycle flows, Nonlinearity, Volume 18 (2005) no. 6, pp. 2715-2726 | Article | MR 2176954 | Zbl 1125.37019

[DDZ14] Datchev, Kiril; Dyatlov, Semyon; Zworski, Maciej Sharp polynomial bounds on the number of Pollicott–Ruelle resonances, Ergodic Theory Dyn. Syst., Volume 34 (2014) no. 4, pp. 1168-1183 | Article | MR 3227152 | Zbl 1332.37006

[DFG15] Dyatlov, Semyon; Faure, Frédéric; Guillarmou, Colin Power spectrum of the geodesic flow on hyperbolic manifolds, Anal. PDE, Volume 8 (2015) no. 4, pp. 923-1000 | Article | MR 3366007 | Zbl 1371.37056

[DG16] Dyatlov, Semyon; Guillarmou, Colin Pollicott–Ruelle resonances for open systems, Ann. Henri Poincaré, Volume 17 (2016) no. 11, pp. 3089-3146 | Article | MR 3556517 | Zbl 1367.37038

[DZ16] Dyatlov, Semyon; Zworski, Maciej Fonctions zêta dynamiques pour les flots d’Anosov en utilisant l’analyse microlocale, Ann. Sci. Éc. Norm. Supér., Volume 49 (2016) no. 3, pp. 543-577 | Zbl 1369.37028

[DZ19] Dyatlov, Semyon; Zworski, Maciej Mathematical theory of scattering resonances, Graduate Studies in Mathematics, Volume 200, American Mathematical Society, 2019 | MR 3969938 | Zbl 07119990

[FF03] Flaminio, Livio; Forni, Giovanni Invariant distributions and time averages for horocycle flows, Duke Math. J., Volume 119 (2003) no. 3, pp. 465-526 | MR 2003124 | Zbl 1044.37017

[FS11] Faure, Frédéric; Sjöstrand, Johannes Upper bound on the density of Ruelle resonances for Anosov flows, Commun. Math. Phys., Volume 308 (2011) no. 2, pp. 325-364 | Article | MR 2851145 | Zbl 1260.37016

[FT13] Faure, Frédéric; Tsujii, Masato Band structure of the Ruelle spectrum of contact Anosov flows, C. R. Math. Acad. Sci. Paris, Volume 351 (2013) no. 9-10, pp. 385-391 | Article | MR 3072166 | Zbl 1346.37030

[FT17a] Faure, Frédéric; Tsujii, Masato Fractal Weyl law for the Ruelle spectrum of Anosov flows (2017) (https://arxiv.org/abs/1706.09307)

[FT17b] Faure, Frédéric; Tsujii, Masato The semiclassical zeta function for geodesic flows on negatively curved manifolds, Invent. Math., Volume 208 (2017) no. 3, pp. 851-998 | Article | MR 3648976 | Zbl 1379.37054

[GBW17] Guedes Bonthonneau, Yannick; Weich, Tobias Ruelle–Pollicott Resonances for Manifolds with Hyperbolic Cusps (2017) (https://arxiv.org/abs/1712.07832)

[GHW18] Guillarmou, Colin; Hilgert, Joachim; Weich, Tobias Classical and quantum resonances for hyperbolic surfaces, Math. Ann., Volume 370 (2018) no. 3, p. 3-4 | MR 3770166 | Zbl 06856707

[GO05] Grellier, Sandrine; Otal, Jean-Pierre Bounded eigenfunctions in the real hyperbolic space, Int. Math. Res. Not., Volume 62 (2005), pp. 3867-3897 | Article | MR 2202176 | Zbl 1139.58024

[Had20] Hadfield, Charles Ruelle and quantum resonances for open hyperbolic manifolds, Int. Math. Res. Not., Volume 2020 (2020) no. 5, pp. 1445-1480 | Article | MR 4073946 | Zbl 07188615

[Hel74] Helgason, Sigurdur Eigenspaces of the Laplacian; integral representations and irreducibility, J. Funct. Anal., Volume 17 (1974) no. 3, pp. 328-353 | Article | MR 367111 | Zbl 0303.43021

[Hel78] Helgason, Sigurdur Differential geometry, Lie groups and symmetric spaces, Pure and Applied Mathematics, Volume 80, Academic Press Inc., 1978 | MR 514561 | Zbl 0451.53038

[Hel84] Helgason, Sigurdur Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical functions, Pure and Applied Mathematics, Volume 113, Academic Press Inc., 1984 | Zbl 0543.58001

[HHS12] Hansen, Sönke; Hilgert, Joachim; Schröder, Michael Patterson–Sullivan distributions in higher rank, Math. Z., Volume 272 (2012) no. 1-2, pp. 607-643 | Article | MR 2968245 | Zbl 1252.53062

[Hil05] Hilgert, Joachim An ergodic Arnold–Liouville theorem for locally symmetric spaces, Twenty Years of Bialowieza: A Mathematical Anthology. Aspects of differential geometric methods in physics (World Scientific Monograph Series in Mathematics) Volume 8, World Scientific, 2005, pp. 163-184 | Article | MR 2181551 | Zbl 1114.53069

[HS09] Hilgert, Joachim; Schröder, Michael Patterson–Sullivan distributions for rank one symmetric spaces of the noncompact type (2009) (https://arxiv.org/abs/0909.2142)

[Hör90] Hörmander, Lars The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis. Reprint of the second (1990) edition, Grundlehren der Mathematischen Wissenschaften, Volume 256, Springer, 1990 | Zbl 0712.35001

[KW19] Küster, Benjamin; Weich, Tobias Quantum-classical correspondence on associated vector bundles over locally symmetric spaces, Int. Math. Res. Not. (2019), rnz068 | Article

[KW20] Küster, Benjamin; Weich, Tobias Pollicott–Ruelle resonant states and Betti numbers, Commun. Math. Phys., Volume 378 (2020) no. 2, pp. 917-941 | Article | MR 4134938 | Zbl 07236110

[Liv04] Liverani, Carlangelo On contact Anosov flows, Ann. Math., Volume 159 (2004) no. 3, pp. 1275-1312 | Article | MR 2113022 | Zbl 1067.37031

[OS80] Oshima, Toshio; Sekiguchi, Jiro Eigenspace of invariant differential operators on an affine symmetric space, Invent. Math., Volume 57 (1980) no. 1, pp. 1-81 | Article | MR 564184 | Zbl 0434.58020

[Ota98] Otal, Jean-Pierre Sur les fonctions propres du laplacien du disque hyperbolique, C. R. Math. Acad. Sci. Paris, Volume 327 (1998) no. 2, pp. 161-166 | Article | MR 1645108 | Zbl 0919.31005

[Shn74] Shnirel’man, Alexander I. Ergodic properties of eigenfunctions, Usp. Mat. Nauk, Volume 29 (1974) no. 6, p. 181-182 | MR 402834 | Zbl 0324.58020

[Wei17] Weich, Tobias On the support of Pollicott–Ruelle resonanant states for Anosov flows, Ann. Henri Poincaré, Volume 18 (2017) no. 1, pp. 37-52 | Article | MR 3592089 | Zbl 1365.37031

[Zel87] Zelditch, Steven Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J., Volume 55 (1987) no. 4, pp. 919-941 | MR 916129 | Zbl 0643.58029

[Zwo12] Zworski, Maciej Semiclassical analysis, Graduate Studies in Mathematics, Volume 138, American Mathematical Society, 2012 | MR 2952218 | Zbl 1252.58001