A Dolbeault Lemma for Temperate Currents
Annales Henri Lebesgue, Volume 4 (2021), pp. 879-896.

Metadata

Keywords Stein open subset of $\mathbb{C}^n$ or of a Stein manifold, $L^2$ estimates, $\bar{\partial }$-operator, Dolbeault $\bar{\partial }$-complex, temperate distributions and currents, temperate cohomology, Sobolev spaces

Abstract

We consider a bounded open Stein subset Ω of a complex Stein manifold X of dimension n. We prove that if f is a current on X of bidegree (p,q+1), ¯-closed on Ω, we can find a current u on X of bidegree (p,q) which is a solution of the equation ¯u=f in Ω. In other words, we prove that the Dolbeault complex of temperate currents on Ω (i.e. currents on Ω which extend to currents on X) is concentrated in degree 0. Moreover if f is a current on X= n of order k, then we can find a solution u which is a current on n of order k+2n+1.


References

[Dem82] Demailly, Jean-Pierre Estimations L 2 pour l’opérateur ¯ d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète, Ann. Sci. Éc. Norm. Supér., Volume 15 (1982), pp. 457-511 | DOI | Numdam | Zbl

[Dem12] Demailly, Jean-Pierre Complex Analytic and Differential Geometry, 2012 (https://www-fourier.ujf-grenoble.fr/~Demailly/manuscripts/agbook.pdf, Open Content Book. Chapter VIII, paragraph 6, Theorem 6.9, p. 379)

[Dol56] Dolbeault, Pierre Formes différentielles et cohomologie sur une variété analytique complexe, Ann. Math., Volume 64 (1956), pp. 83-130 | DOI | MR | Zbl

[Dol57] Dolbeault, Pierre Formes différentielles et cohomologie sur une variété analytique complexe II, Ann. Math., Volume 65 (1957), pp. 282-330 | DOI | MR | Zbl

[Ele75] Elencwajg, Georges Pseudoconvexité locale dans les variétés kählériennes, Ann. Inst. Fourier, Volume 25 (1975) no. 2, pp. 295-314 | DOI | Numdam | MR | Zbl

[Hör65] Hörmander, Lars L 2 Estimates and Existence Theorem for the ¯ Operator, Acta Math., Volume 113 (1965), pp. 89-152 | DOI | MR | Zbl

[Hör83] Hörmander, Lars The analysis of linear partial differential operators. I: Distribution theory and Fourier analysis, Grundlehren der Mathematischen Wissenschaften, 256, Springer, 1983 | Zbl

[Hör90] Hörmander, Lars An Introduction to Complex Analysis in Several Variables, North-Holland Mathematical Library, 7, North-Holland, 1990 | MR | Zbl

[KS96] Kashiwara, Masaki; Schapira, Pierre Moderate and Formal Cohomology associated with Constructibles Sheaves, Mém. Soc. Math. Fr., Nouv. Sér., Volume 64 (1996), pp. iii-64 | Numdam | Zbl

[Lel64] Lelong, Pierre Fonctions entières (n variables) et fonctions plurisousharmoniques d’ordre fini dans n , J. Anal. Math., Volume 12 (1964), pp. 365-406 | DOI | MR | Zbl

[Sch50] Schwartz, Laurent Théorie des distributions. Tome I, Actualités Scientifiques Industrielles ; Publications de l’Institut de Mathématique de l’Université de Strasbourg, 1091-9, Hermann, 1950 (2ème édition en 1957, réédition, 1966) | Zbl

[Sch17] Schapira, Pierre Microlocal Analysis and beyond (2017) (https://arxiv.org/abs/1701.08955)

[Sch21] Schapira, Pierre Vanishing of Temperate Cohomology on Complex Manifolds, Ann. Henri Lebesgue, Volume 4 (2021), pp. 863-877 | DOI

[Siu70] Siu, Yum-Tong Holomorphic Functions of Polynomial Growth on Bounded Domains, Duke Math. J., Volume 37 (1970), pp. 77-84 | MR | Zbl

[Sko71] Skoda, Henri d -cohomologie à croissance lente dans C n , Ann. Sci. Éc. Norm. Supér., Volume 4 (1971) no. 1, pp. 97-120 | DOI | MR | Zbl

[Sko20] Skoda, Henri A Dolbeault lemma for temperate currents (2020) (https://arxiv.org/abs/2003.11437)

[Wei58] Weil, André Introduction à l’étude des variétés kählériennes, Actualités Scientifiques et Industrielles, 1267, Hermann, 1958 | Zbl