Hypocoercivity with Schur complements
Annales Henri Lebesgue, Volume 5 (2022), pp. 523-557.


KeywordsHypocoercivity, Langevin dynamics, Schur complements, resolvent estimates


We propose an approach to obtaining explicit estimates on the resolvent of hypocoercive operators by using Schur complements, rather than from an exponential decay of the evolution semigroup combined with a time integral. We present applications to Langevin-like dynamics and Fokker–Planck equations, as well as the linear Boltzmann equation (which is also the generator of randomized Hybrid Monte Carlo in molecular dynamics). In particular, we make precise the dependence of the resolvent bounds on the parameters of the dynamics and on the dimension. We also highlight the relationship of our method with other hypocoercive approaches.


[AAC16] Achleitner, Franz; Arnold, Arnold; Carlen, Eric A. On linear hypocoercive BGK models, From Particle Systems to Partial Differential Equations III. Particle systems and PDEs III, Braga, Portugal, December 2014 (Gonçalves, Patrícia; Soares, A., eds.) (Springer Proceedings in Mathematics & Statistics), Volume 162, Springer, 2016, pp. 1-37 | MR | Zbl

[AAMN19] Albritton, D.; Armstrong, S.; Mourrat, J.-C.; Novack, M. Variational methods for the kinetic Fokker–Planck equation (2019) (https://arxiv.org/abs/1902.04037)

[AAS15] Achleitner, Franz; Arnold, Anton; Stürzer, Dominik Large-time behavior in non-symmetric Fokker–Planck equations, Riv. Math. Univ. Parma (N.S.), Volume 6 (2015) no. 1, pp. 1-68 | MR | Zbl

[ADNR21] Andrieu, Christophe; Durmus, Alain; Nüsken, Nikolas; Roussel, Julien Hypocoercivity of piecewise deterministic Markov process-Monte Carlo, Ann. Appl. Probab., Volume 31 (2021) no. 5, pp. 2478-2517 | MR | Zbl

[ASS20] Arnold, Anton; Schmeiser, Christian; Signorello, Beatrice Propagator norm and sharp decay estimates for Fokker–Planck equations with linear drift (2020) (https://arxiv.org/abs/2003.01405 to appear in Communications in Mathematical Sciences)

[Bal07] Balian, Roger From Microphysics to Macrophysics. Methods and applications of statistical physics. I-II, Theoretical and Mathematical Physics, Springer, 2007

[Bau17] Baudoin, Fabrice Bakry–Émery meet Villani, J. Funct. Anal., Volume 273 (2017) no. 7, pp. 2275-2291 | DOI | Zbl

[BBCG08] Bakry, Dominique; Barthe, Franck; Cattiaux, Patrick; Guillin, Arnaud A simple proof of the Poincaré inequality for a large class of probability measures, Electron. Commun. Probab., Volume 13 (2008), pp. 60-66 | Zbl

[BCG08] Bakry, Dominique; Cattiaux, Patrick; Guillin, Arnaud Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré, J. Funct. Anal., Volume 254 (2008) no. 3, pp. 727-759 | DOI | Zbl

[BCHR20] Bessemoulin-Chatard, Marianne; Herda, Maxime; Rey, Thomas Hypocoercivity and diffusion limit of a finite volume scheme for linear kinetic equations, Math. Comput., Volume 89 (2020), pp. 1093-1133 | DOI | MR | Zbl

[BDLS19] Bouin, Emeric; Dolbeault, Jean; Laflèche, Laurent; Schmeiser, Christian Fractional hypocoercivity (2019) (https://arxiv.org/abs/1911.11020v1)

[BDM + 20] Bouin, Emeric; Dolbeault, Jean; Mischler, Stéphane; Mouhot, Clément; Schmeiser, Christian Hypocoercivity without confinement, Pure Appl. Anal., Volume 2 (2020) no. 2, pp. 203-232 | DOI | MR | Zbl

[BGH21] Baudoin, Fabrice; Gordina, Maria; Herzog, David P. Gamma calculus beyond Villani and explicit convergence estimates for Langevin dynamics with singular potentials, Arch. Ration. Mech. Anal., Volume 241 (2021) no. 2, pp. 765-804 | DOI | MR | Zbl

[BGL05] Benzi, Michele; Golub, Gene H.; Liesen, Jörg Numerical solution of saddle point problems, Acta Numer., Volume 14 (2005), p. 1 | DOI | MR | Zbl

[Bha82] Bhattacharya, Rabi N. On the functional Central Limit theorem and the law of the iterated logarithm for Markov processes, Z. Wahrscheinlichkeitstheor. Verw. Geb., Volume 60 (1982) no. 2, pp. 185-201 | DOI | MR | Zbl

[BHM17] Bouin, Emeric; Hoffmann, Franca; Mouhot, Clément Exponential decay to equilibrium for a fiber lay-down process on a moving conveyor belt, SIAM J. Math. Anal., Volume 49 (2017) no. 4, pp. 3233-3251 | DOI | MR | Zbl

[BRB19] Birrell, Jeremiah; Rey-Bellet, Luc Concentration inequalities and performance guarantees for hypocoercive MCMC samplers (2019) (https://arxiv.org/abs/1907.11973)

[BRSS17] Bou-Rabee, Nawaf; Sanz-Serna, Jesús María Randomized Hamiltonian Monte Carlo, Ann. Appl. Probab., Volume 27 (2017) no. 4, pp. 2159-2194 | MR | Zbl

[BS13] Bernard, Étienne; Salvarani, Francesco On the exponential decay to equilibrium of the degenerate linear Boltzmann equation, J. Funct. Anal., Volume 265 (2013) no. 9, pp. 1934-1954 | DOI | MR | Zbl

[BÉ85] Bakry, Dominique; Émery, Michel Diffusions hypercontractives, Séminaire de Probabilités XIX, 1983/84 (Lecture Notes in Mathematics), Volume 1123, Springer, 1985, pp. 177-206 | DOI | Numdam | MR | Zbl

[CCEY20] Cañizo, José A.; Cao, Chuqi; Evans, Josephine; Yoldas, Havva Hypocoercivity of linear kinetic equations via Harris’s Theorem, Kinet. Relat. Models, Volume 13 (2020) no. 1, pp. 97-128 | DOI | MR | Zbl

[CDH + 21] Carrapatoso, Kleber; Dolbeault, Jean; Hérau, Frédéric; Mischler, Stéphane; Mouhot, Clément; Schmeiser, Christian Special modes and hypocoercivity for linear kinetic equations with several conservation laws and a confining potential (2021) (https://arxiv.org/abs/2105.04855)

[CEL + 18] Carlen, Eric A.; Esposito, Raffaele; Lebowitz, Joel L.; Marra, Rossana; Mouhot, Clément Approach to the steady state in kinetic models with thermal reservoirs at different temperatures, J. Stat. Phys., Volume 172 (2018) no. 2, pp. 522-543 | DOI | MR | Zbl

[CG14] Cattiaux, Patrick; Guillin, Arnaud Semi log-concave Markov diffusions, Séminaire de Probabilités XLVI (Lecture Notes in Mathematics), Volume 2123, Springer, 2014, pp. 231-292 | DOI | MR | Zbl

[CGMZ19] Cattiaux, Patrick; Guillin, Arnaud; Monmarché, Pierre; Zhang, Chaoen Entropic multipliers method for Langevin diffusion and weighted log Sobolev inequalities, J. Funct. Anal., Volume 277 (2019) no. 11, 108288 | MR | Zbl

[CHSG22] Camrud, Evan; Herzog, David P.; Stoltz, Gabriel; Gordina, Maria Weighted L 2 -contractivity of Langevin dynamics with singular potentials, Nonlinearity, Volume 35 (2022) no. 2, pp. 998-1035 | DOI | MR | Zbl

[CLW19] Cao, Yu; Lu, Jianfeng; Wang, Lihan On explicit L 2 -convergence rate estimate for underdamped Langevin dynamics (2019) (https://arxiv.org/abs/1908.04746)

[DHL20] Dujardin, Guillaume; Hérau, Frédéric; Lafitte, Pauline Coercivity, hypocoercivity, exponential time decay and simulations for discrete Fokker–Planck equations, Numer. Math., Volume 144 (2020), pp. 615-697 | DOI | MR | Zbl

[DKMS13] Dolbeault, Jean; Klar, Axel; Mouhot, Clément; Schmeiser, Christian Exponential rate of convergence to equilibrium for a model Describing Fiber Lay-Down Processes, AMRX, Appl. Math. Res. Express, Volume 2013 (2013) no. 2, pp. 165-175 | MR | Zbl

[DL01] Devroye, Luc; Lugosi, Gábor Combinatorial Methods in Density Estimation, Springer Series in Statistics, Springer, 2001 | DOI | Zbl

[DMS09] Dolbeault, Jean; Mouhot, Clément; Schmeiser, Christian Hypocoercivity for kinetic equations with linear relaxation terms, C. R. Math. Acad. Sci. Paris, Volume 347 (2009) no. 9-10, pp. 511-516 | DOI | MR | Zbl

[DMS15] Dolbeault, Jean; Mouhot, Clément; Schmeiser, Christian Hypocoercivity for linear kinetic equations conserving mass, Trans. Am. Math. Soc., Volume 367 (2015) no. 6, pp. 3807-3828 | DOI | MR | Zbl

[DNP17] Duncan, Andrew B.; Nüsken, Nikolas; Pavliotis, Grigorios A. Using perturbed underdamped Langevin dynamics to efficiently sample from probability distributions, J. Stat. Phys., Volume 169 (2017) no. 6, pp. 1098-1131 | DOI | MR | Zbl

[DPBCD21] Deligiannidis, Georges; Paulin, Daniel; Bouchard-Côté, Alexandre; Doucet, Arnaud Randomized Hamiltonian Monte Carlo as Scaling Limit of the Bouncy Particle Sampler and Dimension-Free Convergence Rates, Ann. Appl. Probab., Volume 31 (2021) no. 6, pp. 2612-2662 | DOI | MR | Zbl

[DV01] Desvillettes, Laurent; Villani, Cédric On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: The linear Fokker–Planck equation, Commun. Pure Appl. Math., Volume 54 (2001) no. 1, pp. 1-42 | DOI | MR | Zbl

[EG04] Ern, Alexandre; Guermond, Jean-Luc Theory and Practice of Finite Elements, Applied Mathematical Sciences, 159, Springer, 2004 | Zbl

[EGZ19] Eberle, Andreas; Guillin, Arnaud; Zimmer, Raphael Coupling and quantitative contraction rates for Langevin dynamics, Ann. Probab., Volume 47 (2019) no. 4, pp. 1982-2010 | MR | Zbl

[EH03] Eckmann, Jean-Pierre; Hairer, Martin Spectral Properties of Hypoelliptic Operators, Commun. Math. Phys., Volume 235 (2003) no. 2, pp. 233-253 | DOI | MR | Zbl

[Eva18] Evans, Josephine Hypocoercivity in Wasserstein-1 for the kinetic Fokker-Planck equation via Malliavin Calculus (2018) (https://arxiv.org/abs/1810.01324)

[Eva21] Evans, Josephine Hypocoercivity in Phi-entropy for the linear relaxation Boltzmann equation on the Torus, SIAM J. Math. Anal., Volume 53 (2021) no. 2, pp. 1357-1378 | DOI | MR | Zbl

[FS01] Frenkel, Daan; Smit, Berend Understanding Molecular Simulation. From Algorithms to Applications, Academic Press Inc., 2001

[Geo21] Georgoulis, Emmanuil H. Hypocoercivity-compatible finite element methods for the long-time computation of Kolmogorov’s equation, SIAM J. Numer. Anal., Volume 59 (2021) no. 1, pp. 173-194 | DOI | MR | Zbl

[GS16] Grothaus, Martin; Stilgenbauer, Patrik Hilbert space hypocoercivity for the Langevin dynamics revisited, Methods Funct. Anal. Topol., Volume 22 (2016) no. 2, pp. 152-168 | MR | Zbl

[GW19] Grothaus, Martin; Wang, Feng-Yu Weak Poincaré inequalities for convergence rate of degenerate diffusion processes, Ann. Probab., Volume 47 (2019) no. 5, pp. 2930-2952 | Zbl

[Her18b] Herzog, David P. Exponential relaxation of the Nosé–Hoover thermostat under Brownian heating, Commun. Math. Sci., Volume 16 (2018) no. 8, pp. 2231-2260 | DOI | MR | Zbl

[HKL15] Han-Kwan, Daniel; Léautaud, Matthieu Geometric analysis of the linear Boltzmann equation I. Trend to equilibrium, Ann. PDE, Volume 1 (2015) no. 1, 3 | MR | Zbl

[HM19] Herzog, David P.; Mattingly, Jonathan C. Ergodicity and Lyapunov functions for Langevin dynamics with singular potentials, Commun. Pure Appl. Math., Volume 72 (2019) no. 10, pp. 2231-2255 | DOI | MR | Zbl

[HN04] Hérau, Frédéric; Nier, Francis Isotropic hypoellipticity and trend to equilibrium for the Fokker–Planck equation with a high-degree potential, Arch. Ration. Mech. Anal., Volume 171 (2004), pp. 151-218 | DOI | MR | Zbl

[HN05] Helffer, Bernard; Nier, Francis Hypoelliptic Estimates and Spectral Theory for Fokker–Planck Operators and Witten Laplacians, Lecture Notes in Mathematics, 1862, Springer, 2005 | DOI | Zbl

[HP08] Hairer, Martin; Pavliotis, Grigorios A. From ballistic to diffusive behavior in periodic potentials, J. Stat. Phys., Volume 131 (2008), pp. 175-202 | DOI | MR | Zbl

[Hér06] Hérau, Frédéric Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation, Asymptotic Anal., Volume 46 (2006) no. 3-4, pp. 349-359 | MR | Zbl

[Hér07] Hérau, Frédéric Short and long time behavior of the Fokker–Planck equation in a confining potential and applications, J. Funct. Anal., Volume 244 (2007) no. 1, pp. 95-118 | DOI | MR | Zbl

[Hér18a] Hérau, Frédéric Introduction to hypocoercive methods and applications for simple linear inhomogeneous kinetic models, Lectures on the Analysis of Nonlinear Partial Differential Equations. Part 5 (Chemin, Jean-Yves, ed.) (Morningside Lectures in Mathematics), Volume 5, International Press, 2018, pp. 119-147 | MR | Zbl

[IOS19] Iacobucci, Alessandra; Olla, Stefano; Stoltz, Gabriel Convergence rates for nonequilibrium Langevin dynamics, Ann. Math. Qué., Volume 43 (2019) no. 1, pp. 73-98 | DOI | MR | Zbl

[Koz89] Kozlov, Sergeĭ M. Effective diffusion for the Fokker–Planck equation, Math. Notes, Volume 45 (1989) no. 5, pp. 360-368 | DOI | MR | Zbl

[Led99] Ledoux, Michel Concentration of measure and logarithmic Sobolev inequalities, Séminaire de Probabilités, XXXIII (Azéma, Jacques, ed.) (Lecture Notes in Mathematics), Volume 1709, Springer, 1999, pp. 120-216 | DOI | MR | Zbl

[LM15] Leimkuhler, Ben; Matthews, Charles Molecular Dynamics. With deterministic and stochastic numerical methods, Interdisciplinary Applied Mathematics, 39, Springer, 2015 | Zbl

[LMS16] Leimkuhler, Ben; Matthews, Charles; Stoltz, Gabriel The computation of averages from equilibrium and nonequilibrium Langevin molecular dynamics, IMA J. Numer. Anal., Volume 36 (2016) no. 1, pp. 13-79 | MR | Zbl

[LO17] Letizia, Viviana; Olla, Stefano Non-equilibrium isothermal transformations in a temperature gradient from a microscopic dynamics, Ann. Probab., Volume 45 (2017) no. 6A, pp. 3987-4018 | Zbl

[LS16] Lelièvre, Tony; Stoltz, Gabriel Partial differential equations and stochastic methods in molecular dynamics, Acta Numer., Volume 25 (2016), pp. 681-880 | DOI | MR | Zbl

[LSS20] Leimkuhler, Ben; Sachs, Matthias; Stoltz, Gabriel Hypocoercivity properties of adaptive Langevin dynamics, SIAM J. Appl. Math., Volume 80 (2020) no. 3, pp. 1197-1222 | DOI | MR | Zbl

[LW20] Lu, Jianfeng; Wang, Lihan On explicit L 2 -convergence rate estimate for piecewise deterministic Markov processes (2020) (https://arxiv.org/abs/2007.14927, to appear in Annals of Applied Probability)

[Men20] Menegaki, Angeliki Quantitative Rates of Convergence to Non-Equilibrium Steady State for a Weakly Anharmonic Chain of Oscillators, J. Stat. Phys., Volume 181 (2020) no. 1, pp. 53-94 | DOI | MR | Zbl

[MK14] Mokhtar-Kharroubi, Mustapha On L 1 exponential trend to equilibrium for conservative linear kinetic equations on the torus, J. Funct. Anal., Volume 266 (2014) no. 11, pp. 6418-6455 | DOI | MR | Zbl

[MN06] Mouhot, Clément; Neumann, Lukas Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus, Nonlinearity, Volume 19 (2006) no. 4, pp. 969-998 | DOI | MR | Zbl

[Mon19a] Monmarché, Pierre Generalized Γ calculus and application to interacting particles on a graph, Potential Anal., Volume 50 (2019) no. 3, pp. 439-466 | DOI | MR | Zbl

[Mon19b] Monmarché, Pierre L 2 hypocoercivity, deviation bounds, hitting times and Lyapunov functions (2019) (https://arxiv.org/abs/1911.01748, to appear in Annales Mathématiques Blaise Pascal)

[Mon21] Monmarché, Pierre A note on Fisher Information hypocoercive decay for the linear Boltzmann equation, Anal. Math. Phys., Volume 11 (2021) no. 1, 1 | MR | Zbl

[MPP02] Metafune, Giorgio; Pallara, Diego; Priola, Enrico Spectrum of Ornstein–Uhlenbeck operators in L p spaces with respect to invariant measures, J. Funct. Anal., Volume 196 (2002) no. 1, pp. 40-60 | DOI | MR | Zbl

[MSH02] Mattingly, Jonathan C.; Stuart, Andrew M.; Higham, Desmond J. Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise, Stochastic Processes Appl., Volume 101 (2002) no. 2, pp. 185-232 | DOI | MR | Zbl

[OP11] Ottobre, Michela; Pavliotis, Grigorios A. Asymptotic analysis for the generalized Langevin equation, Nonlinearity, Volume 24 (2011) no. 5, pp. 1629-1653 | DOI | MR | Zbl

[OR07] Otto, Felix; Reznikoff, Maria G. A new criterion for the logarithmic Sobolev inequality and two applications, J. Funct. Anal., Volume 243 (2007) no. 1, pp. 121-157 | DOI | MR | Zbl

[Pav14] Pavliotis, Grigorios A. Stochastic Processes and Applications. Diffusion processes, the Fokker–Planck and Langevin equations, Texts in Applied Mathematics, 60, Springer, 2014 | DOI | Zbl

[PZ17] Porretta, Alessio; Zuazua, Enrique Numerical hypocoercivity for the Kolmogorov equation, Math. Comput., Volume 86 (2017) no. 303, pp. 97-119 | DOI | MR | Zbl

[RB06] Rey-Bellet, Luc Ergodic Properties of Markov Processes, Open Quantum Systems II. The Markovian approach. Lecture notes of the summer school, Grenoble, France, June 16th – July 4th 2003 (Attal, S.; Joye, A.; Pillet, C.-A., eds.) (Lecture Notes in Mathematics), Volume 1881, Springer, 2006, pp. 1-39 | MR | Zbl

[RS18] Roussel, Julien; Stoltz, Gabriel Spectral methods for Langevin dynamics and associated error estimates, ESAIM, Math. Model. Numer. Anal., Volume 52 (2018) no. 3, pp. 1051-1083 | DOI | MR | Zbl

[ST18] Stoltz, Gabriel; Trstanova, Zofia Langevin dynamics with general kinetic energies, Multiscale Model. Simul, Volume 16 (2018) no. 2, pp. 777-806 | DOI | MR | Zbl

[SVE18] Stoltz, Gabriel; Vanden-Eijnden, Eric Longtime convergence of the Temperature-Accelerated Molecular Dynamics method, Nonlinearity, Volume 31 (2018) no. 8, pp. 3748-3769 | DOI | MR | Zbl

[SZ07] Sjöstrand, Johannes; Zworski, Maciej Elementary linear algebra for advanced spectral problems, Ann. Inst. Fourier, Volume 57 (2007) no. 7, pp. 2095-2141 | DOI | Numdam | MR | Zbl

[Tal02] Talay, Denis Stochastic Hamiltonian dissipative systems: Exponential convergence to the invariant measure, and discretization by the implicit Euler scheme, Markov Process. Relat. Fields, Volume 8 (2002) no. 2, pp. 163-198 | Zbl

[Tro77] Tropper, M. M. Ergodic and quasideterministic properties of finite-dimensional stochastic systems, J. Stat. Phys., Volume 17 (1977) no. 6, pp. 491-509 | DOI | MR | Zbl

[Tuc10] Tuckerman, Mark E. Statistical Mechanics: Theory and Molecular Simulation, Oxford Graduate Texts, Oxford University Press, 2010 | MR | Zbl

[Uka70] Ukai, Seiji On the existence of global solutions of mixed problem for non-linear Boltzmann equation, Proc. Japan Acad., Volume 30 (1970), pp. 179-184 | Zbl

[Vid70] Vidav, Ivan Spectra of perturbed semigroups with applications to transport theory, J. Math. Anal. Appl., Volume 30 (1970), pp. 264-279 | DOI | MR | Zbl

[Vil09] Villani, Cédric Hypocoercivity, Memoirs of the American Mathematical Society, 950, American Mathematical Society, 2009 | Zbl

[Wu01] Wu, Liming Large and moderate deviations and exponential convergence for stochastic damping Hamiltonian systems, Stochastic Processes Appl., Volume 91 (2001) no. 2, pp. 205-238 | MR | Zbl

[Yos01] Yoshida, Nobuo The equivalence of the log-Sobolev inequality and a mixing condition for unbounded spin systems on the lattice, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 37 (2001) no. 2, pp. 223-243 | DOI | Numdam | MR | Zbl