Metadata
Abstract
We define filtrations by affinoid groups, in the Berkovich analytification of a connected reductive group, related to Moy–Prasad filtrations. They are parametrized by a cone, whose basis is the Bruhat–Tits building and whose vertex is the neutral element, via the notions of Shilov boundary and holomorphically convex envelope.
References
[Ber90] Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs, 33, American Mathematical Society, 1990 | MR | Zbl
[Ber93] Étale cohomology for non-Archimedean analytic spaces, Publ. Math., Inst. Hautes Étud. Sci., Volume 78 (1993), pp. 5-161 | DOI | Numdam | MR | Zbl
[BT84] Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée, Publ. Math., Inst. Hautes Étud. Sci. (1984) no. 60, pp. 197-376 | MR | Zbl
[Cor20] Filtrations and buildings, Memoirs of the American Mathematical Society, 1296, American Mathematical Society, 2020 | DOI | MR | Zbl
[DFN15] Berkovich spaces and applications (Ducros, Antoine; Favre, Charles; Nicaise, Johannes, eds.), Lecture Notes in Mathematics, 2119, Springer, 2015 (based on a workshop, Santiago de Chile, Chile, January 2008 and a summer school, Paris, France, June 2010) | DOI | MR | Zbl
[Kim07] Supercuspidal representations: an exhaustion theorem, J. Am. Math. Soc., Volume 20 (2007) no. 2, pp. 273-320 | DOI | MR | Zbl
[KP21] Bruhat–Tits theory: a new approach (2021) (in preparation)
[May19] On the constructions of supercuspidal representations, Ph. D. Thesis, Université Sorbonne Paris Cité (2019) (https://tel.archives-ouvertes.fr/tel-02866443/file/Mayeux_Arnaud_2_complete_20190723.pdf, HAL_ID=tel-02866443, HAL_VERSION=v1)
[MP94] Unrefined minimal -types for -adic groups, Invent. Math., Volume 116 (1994) no. 1-3, pp. 393-408 | DOI | MR | Zbl
[MP96] Jacquet functors and unrefined minimal -types, Comment. Math. Helv., Volume 71 (1996) no. 1, pp. 98-121 | DOI | MR | Zbl
[MP21] Notions of Stein spaces in non-Archimedean geometry, J. Algebr. Geom., Volume 30 (2021) no. 2, pp. 287-330 | DOI | MR | Zbl
[MRR20] Néron blowups and low-degree cohomological applications (2020) (https://arxiv.org/abs/2001.03597)
[PP15] The convergence Newton polygon of a -adic differential equation II: Continuity and finiteness on Berkovich curves, Acta Math., Volume 214 (2015) no. 2, pp. 357-393 | DOI | MR | Zbl
[RTW10] Bruhat–Tits theory from Berkovich’s point of view. I. Realizations and compactifications of buildings, Ann. Sci. Éc. Norm. Supér., Volume 43 (2010) no. 3, pp. 461-554 | DOI | Numdam | MR | Zbl
[Thu05] Théorie du potentiel sur les courbes en géométrie analytique non archimédienne : applications à la théorie d’Arakelov, Ph. D. Thesis, Université Rennes 1, Rennes, France (2005) (https://tel.archives-ouvertes.fr/tel-00010990)
[Yu01] Construction of tame supercuspidal representations, J. Am. Math. Soc., Volume 14 (2001) no. 3, pp. 579-622 | DOI | MR | Zbl
[Yu15] Smooth models associated to concave functions in Bruhat–Tits theory, Autour des schémas en groupes. École d’Été “Schémas en groupes”. Vol. III (Edixhoven, Bas et al., eds.) (Panoramas et Synthèses), Volume 47, Société Mathématique de France, 2015, pp. 227-258 | MR | Zbl