A Zero Lyapunov Exponent in Genus 3 Implies the Eierlegende Wollmilchsau
Annales Henri Lebesgue, Volume 7 (2024), pp. 207-237.

Metadata

Keywords Teichmüller geodesic flow, Kontsevich-Zorich cocycle, Abelian differentials, translation surfaces, Lyapunov exponents, period matrices, variational formulas

Abstract

We prove that the closed orbit of the Eierlegende Wollmilchsau is the only SL 2 ()-orbit closure in genus three with a zero Lyapunov exponent in its Kontsevich–Zorich spectrum. The result recovers previous partial results in this direction by Bainbridge–Habegger–Möller and the first named author. The main new contribution is the identification of the differentials in the Hodge bundle corresponding to the Forni subspace in terms of the degenerations of the surface. We use this description of the differentials in the Forni subspace to evaluate them on absolute homology curves and apply the jump problem from the work of Hu and the third named author to the differentials near the boundary of the orbit closure. This results in a simple geometric criterion that excludes the existence of a Forni subspace.


References

[AEM17] Avila, Artur; Eskin, Alex; Möller, Martin Symplectic and isometric SL (2,)-invariant subbundles of the Hodge bundle, J. Reine Angew. Math., Volume 732 (2017), pp. 1-20 | DOI | MR | Zbl

[AN20] Aulicino, David; Norton, Chaya Shimura–Teichmüller curves in genus 5, J. Mod. Dyn., Volume 16 (2020), pp. 255-288 | DOI | MR | Zbl

[Aul15a] Aulicino, David Affine Manifolds and Zero Lyapunov Exponents in Genus 3, Geom. Funct. Anal., Volume 25 (2015) no. 5, pp. 1333-1370 | DOI | MR | Zbl

[Aul15b] Aulicino, David Teichmüller discs with completely degenerate Kontsevich–Zorich spectrum, Comment. Math. Helv., Volume 90 (2015) no. 3, pp. 573-643 | DOI | MR | Zbl

[Aul18] Aulicino, David Affine invariant submanifolds with completely degenerate Kontsevich–Zorich spectrum, Ergodic Theory Dyn. Syst., Volume 38 (2018) no. 1, pp. 10-33 | DOI | MR | Zbl

[AV07] Avila, Artur; Viana, Marcelo Simplicity of Lyapunov spectra: proof of the Zorich–Kontsevich conjecture, Acta Math., Volume 198 (2007) no. 1, pp. 1-56 | DOI | MR | Zbl

[Bai07] Bainbridge, Matt Euler characteristics of Teichmüller curves in genus two, Geom. Topol., Volume 11 (2007), pp. 1887-2073 | MR | Zbl

[BHM16] Bainbridge, Matt; Habegger, Philipp; Möller, Martin Teichmüller curves in genus three and just likely intersections in G m n ×G a n , Publ. Math., Inst. Hautes Étud. Sci., Volume 124 (2016), pp. 1-98 | DOI | MR | Zbl

[EM18] Eskin, Alex; Mirzakhani, Maryam Invariant and stationary measures for the SL (2,) action on moduli space, Publ. Math., Inst. Hautes Étud. Sci., Volume 127 (2018), pp. 95-324 | DOI | MR | Zbl

[EMM15] Eskin, Alex; Mirzakhani, Maryam; Mohammadi, Amir Isolation, equidistribution, and orbit closures for the SL (2,) action on moduli space, Ann. Math., Volume 182 (2015) no. 2, pp. 673-721 | DOI | MR | Zbl

[Fay73] Fay, John D. Theta functions on Riemann surfaces, Lecture Notes in Mathematics, 352, Springer, 1973 | MR | Zbl

[Fil16] Filip, Simion Splitting mixed Hodge structures over affine invariant manifolds, Ann. Math., Volume 183 (2016) no. 2, pp. 681-713 | DOI | MR | Zbl

[Fil17] Filip, Simion Zero Lyapunov exponents and monodromy of the Kontsevich–Zorich cocycle, Duke Math. J., Volume 166 (2017) no. 4, pp. 657-706 | DOI | MR | Zbl

[FM14] Forni, Giovanni; Matheus, Carlos Introduction to Teichmüller theory and its applications to dynamics of interval exchange transformations, flows on surfaces and billiards, J. Mod. Dyn., Volume 8 (2014) no. 3-4, pp. 271-436 | DOI | MR | Zbl

[FMZ14] Forni, Giovanni; Matheus, Carlos; Zorich, Anton Lyapunov spectrum of invariant subbundles of the Hodge bundle, Ergodic Theory Dyn. Syst., Volume 34 (2014) no. 2, pp. 353-408 | MR | Zbl

[For02] Forni, Giovanni Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. Math., Volume 155 (2002) no. 1, pp. 1-103 | MR | Zbl

[For06] Forni, Giovanni On the Lyapunov exponents of the Kontsevich–Zorich cocycle, Handbook of dynamical systems. Vol. 1B, 2006, pp. 549-580 | MR | Zbl

[For11] Forni, Giovanni A geometric criterion for the nonuniform hyperbolicity of the Kontsevich–Zorich cocycle, J. Mod. Dyn., Volume 5 (2011) no. 2, pp. 355-395 (With an appendix by Carlos Matheus) | DOI | MR | Zbl

[HN20] Hu, Xuntao; Norton, Chaya General variational formulas for Abelian differentials, Int. Math. Res. Not. (2020) no. 12, pp. 3540-3581 | DOI | MR | Zbl

[HS08] Herrlich, Frank; Schmithüsen, Gabriela An extraordinary origami curve, Math. Nachr., Volume 281 (2008) no. 2, pp. 219-237 | DOI | MR | Zbl

[KZ03] Kontsevich, Maxim; Zorich, Anton Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., Volume 153 (2003) no. 3, pp. 631-678 | MR | Zbl

[Mas82] Masur, Howard Interval exchange transformations and measured foliations, Ann. Math., Volume 115 (1982) no. 1, pp. 169-200 | DOI | MR | Zbl

[Möl11] Möller, Martin Shimura and Teichmüller curves, J. Mod. Dyn., Volume 5 (2011) no. 1, pp. 1-32 | DOI | MR | Zbl

[Vee82] Veech, William A. Gauss measures for transformations on the space of interval exchange maps, Ann. Math., Volume 115 (1982) no. 1, pp. 201-242 | DOI | MR | Zbl

[Vee89] Veech, William A. Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math., Volume 97 (1989) no. 3, pp. 553-583 | DOI | MR | Zbl

[Wri14] Wright, Alex The field of definition of affine invariant submanifolds of the moduli space of abelian differentials, Geom. Topol., Volume 18 (2014) no. 3, pp. 1323-1341 | DOI | MR | Zbl

[Wri15] Wright, Alex Cylinder deformations in orbit closures of translation surfaces, Geom. Topol., Volume 19 (2015) no. 1, pp. 413-438 | DOI | MR | Zbl

[Yam80] Yamada, Akira Precise variational formulas for abelian differentials, Kodai Math. J., Volume 3 (1980) no. 1, pp. 114-143 | MR | Zbl

[Zor06] Zorich, Anton Flat surfaces, Frontiers in number theory, physics, and geometry. I On random matrices, zeta functions, and dynamical systems, Springer, 2006, pp. 437-583 | DOI | MR | Zbl