Inverse problems for locally perturbed lattices – Discrete Hamiltonian and quantum graph
Annales Henri Lebesgue, Volume 7 (2024), pp. 267-305.

Metadata

Keywords lattice, metric graph, discrete Hamiltonian, S-matrix, inverse porblem

Abstract

We consider the inverse scattering problems for two types of Schrödinger operators on locally perturbed periodic lattices. For the discrete Hamiltonian, the knowledge of the S-matrix for all energies determines the graph structure and the coefficients of the Hamiltonian. For locally perturbed equilateral metric graphs, the knowledge of the S-matrix for all energies determines the graph structure.


References

[AIM16] Ando, Kazunori; Isozaki, Hiroshi; Morioka, Hisashi Spectral properties for Schrödinger operators on perturbed lattices, Ann. Henri Poincaré, Volume 17 (2016), pp. 2103-2171 | DOI | Zbl

[AIM18] Ando, Kazunori; Isozaki, Hiroshi; Morioka, Hisashi Inverse scattering for Schrödinger operators on perturbed periodic lattices, Ann. Henri Poincaré, Volume 19 (2018), pp. 3397-3455 | DOI | Zbl

[And13] Ando, Kazunori Inverse scattering theory for discrete Schrödinger operators on the hexagonal lattice, Ann. Henri Poincaré, Volume 14 (2013), pp. 347-383 | DOI | Zbl

[BER15] Bolte, Jens; Egger, Sebastian; Rueckriemen, Ralf Heat-kernel and resolvent asymptotics for Schrödinger operators on metric graphs, AMRX, Appl. Math. Res. Express, Volume 2015 (2015) no. 1, pp. 129-165 | DOI | Zbl

[BILL23a] Blåsten, Emilia; Isozaki, Hiroshi; Lassas, Matti; Lu, Jinpeng Gelfand’s inverse problem for the graph Laplacian, J. Spectr. Theory, Volume 13 (2023) no. 1, pp. 1-45 | DOI | Zbl

[BILL23b] Blåsten, Emilia; Isozaki, Hiroshi; Lassas, Matti; Lu, Jinpeng Inverse problems for discrete heat equations and random walks for a class of graphs, SIAM J. Discrete Math., Volume 37 (2023), pp. 831-863 | DOI | Zbl

[BK13] Berkolaiko, Gregory; Kuchment, Peter Introduction to Quantum Graphs, Mathematical Surveys and Monographs, 186, American Mathematical Society, 2013 | Zbl

[Cat97] Cattaneo, Carla The spectrum of the continuous Laplacian on a graph, Monatsh. Math., Volume 124 (1997) no. 3, pp. 215-235 | DOI | Zbl

[CET10] Cheon, Taksu; Exner, Pavel; Turek, Ondřej Approximation of a general singular vertex coupling in quantum graphs, Ann. Phys., Volume 325 (2010), pp. 548-578 | DOI | Zbl

[Exn96] Exner, Pavel Weakly coupled states on branching graphs, Lett. Math. Phys., Volume 38 (1996), pp. 313-320 | DOI | Zbl

[Exn97] Exner, Pavel A duality between Schrödinger operators on graphs and certain Jacobi matrices, Ann. Inst. Henri Poincaré, Phys. Théor., Volume 66 (1997), pp. 359-371 | Numdam | Zbl

[GR22] Gernandt, Hannes; Rohleder, Jonathan A Calderéron type inverse problem for the tree graphs, Linear Algebra Appl., Volume 646 (2022), pp. 29-42 | DOI | Zbl

[IK12] Isozaki, Hiroshi; Korotyaev, Evgeny Inverse problems, trace formulae for discrete Schrödinger operators, Ann. Henri Poincaré, Volume 13 (2012), pp. 751-788 | DOI | Zbl

[IM15] Isozaki, Hiroshi; Morioka, Hisashi Inverse scattering at a fixed energy for discrete Schrödinger operators on the square lattice, Ann. Inst. Fourier, Volume 65 (2015), pp. 1153-1200 | DOI | Numdam | Zbl

[IN95] Isakov, Victor; Nachman, Adrian I. Global uniqueness for a two-dimensional semilinear elliptic inverse problem, Trans. Am. Math. Soc., Volume 347 (1995), pp. 3375-3390 | DOI | Zbl

[KKL01] Katchalov, Alexander; Kurylev, Yaroslav; Lassas, Matti Inverse boundary spectral problems, Monographs and Surveys in Pure and Applied Mathematics, 123, Chapman & Hall / CRC Press, 2001 | DOI | Zbl

[KKLM04] Katchalov, Alexander; Kurylev, Yaroslav; Lassas, Matti; Mandache, Niculae Equivalence of time-domain inverse problems and boundary spectral problems, Inverse Probl., Volume 20 (2004), pp. 419-436 | DOI | Zbl

[KS99] Kostrykin, Vadim V.; Schrader, Robert Kirchhoff’s rule for quantum wires, J. Phys. A. Math. Gen., Volume 32 (1999), pp. 595-630 | DOI | Zbl

[Pan06] Pankrashkin, Konstantin Spectra of Schrödinger operators on equilateral quantum graphs, Lett. Math. Phys., Volume 77 (2006), pp. 139-154 | DOI | Zbl

[Pan13] Pankrashkin, Konstantin An example of unitary equivalence between self-adjoint extensions and their parameters, J. Funct. Anal., Volume 265 (2013), pp. 2910-2936 | DOI | Zbl