Vanishing asymptotic Maslov index for conformally symplectic flows
Annales Henri Lebesgue, Volume 7 (2024), pp. 307-355.

Metadata

Keywords Maslov index, Conformally symplectic flows, twist condition

Abstract

Motivated by Mather theory of minimizing measures for symplectic twist dynamics, we study conformally symplectic flows on a cotangent bundle. These dynamics are the most general dynamics for which it makes sense to look at (asymptotic) dynamical Maslov index. Our main result is the existence of invariant measures with vanishing index without any convexity hypothesis, in the general framework of conformally symplectic flows. A degenerate twist-condition hypothesis implies the existence of ergodic invariant measures with zero dynamical Maslov index and thus the existence of points with zero dynamical Maslov index.


References

[AF24] Arnaud, M.-C.; Féjoz, J. Invariant submanifolds of conformal symplectic dynamics, J. Éc. Polytech., Math., Volume 11 (2024), pp. 159-185 | DOI | Zbl

[Arn05] Arnaud, M.-C. Convergence of the semi-group of Lax–Oleinik: a geometric point of view, Nonlinearity, Volume 18 (2005) no. 4, pp. 1835-1840 | DOI | Zbl

[Arn08] Arnaud, M.-C. Fibrés de Green et régularité des graphes C 0 -lagrangiens invariants par un flot de Tonelli, Ann. Henri Poincaré, Volume 9 (2008) no. 5, pp. 881-926 | DOI | Zbl

[Aud03] Audin, M. Lagrangian submanifolds, Symplectic geometry of integrable Hamiltonian systems (Barcelona, 2001) (Advanced Courses in Mathematics – CRM Barcelona), Birkhäuser, 2003, pp. 1-83 | Zbl

[AV17] Arnaud, M.-C.; Venturelli, A. A multidimensional Birkhoff theorem for time-dependent Tonelli Hamiltonians, Calc. Var. Partial Differ. Equ., Volume 56 (2017) no. 4, 122 | Zbl

[Ber08] Bernard, Patrick The dynamics of pseudographs in convex Hamiltonian systems, J. Am. Math. Soc., Volume 21 (2008) no. 3, pp. 615-669 | DOI | MR | Zbl

[BG92] Barge, J.; Ghys, É. Cocycles d’Euler et de Maslov, Math. Ann., Volume 294 (1992) no. 2, pp. 235-265 | DOI | Zbl

[Bru91] Brunella, M. On a theorem of Sikorav, Enseign. Math., Volume 37 (1991) no. 1-2, pp. 83-87 | Zbl

[BW97] Bates, S.; Weinstein, A. Lectures on the geometry of quantization, Berkeley Mathematics Lecture Notes, 8, American Mathematical Society; Berkeley Center for Pure and Applied Mathematics, Berkeley, CA, 1997 | Zbl

[CGIP03] Contreras, G.; Gambaudo, J.-M.; Iturriaga, R.; Paternain, G. P. The asymptotic Maslov index and its applications, Ergodic Theory Dyn. Syst., Volume 23 (2003) no. 5, pp. 1415-1443 | DOI | Zbl

[Cha91] Chaperon, M. Lois de conservation et géométrie symplectique, C. R. Math., Volume 312 (1991) no. 4, pp. 345-348 | Zbl

[CLM94] Cappell, S. E.; Lee, R.; Miller, E. Y. On the Maslov index, Commun. Pure Appl. Math., Volume 47 (1994) no. 2, pp. 121-186 | DOI | Zbl

[Dui76] Duistermaat, J. J. On the Morse index in variational calculus, Adv. Math., Volume 21 (1976) no. 2, pp. 173-195 | DOI | Zbl

[Fat08] Fathi, A. Weak KAM Theorem in Lagrangian Dynamics, 2008 (Preliminary Version Number 10, https://www.math.u-bordeaux.fr/~pthieull/Recherche/KamFaible/Publications/Fathi2008_01.pdf)

[Flo22] Florio, A. On the set of points of zero torsion for negative-torsion maps of the annulus, J. Mod. Dyn., Volume 18 (2022), pp. 555-573 | DOI | Zbl

[God71] Godbillon, C. Éléments de topologie algébrique, Hermann, 1971, 249 pages | Zbl

[Jou91] Joukovskaia, T. Singularités de Minimax et Solutions Faibles d’Équations aux Dérivées Partielles, Ph. D. Thesis, Université de Paris VII, Denis Diderot, Paris, France (1991)

[KB37] Kryloff, N.; Bogoliouboff, N. La théorie générale de la mesure dans son application à l’étude des systèmes dynamiques de la mécanique non linéaire, Ann. Math., Volume 38 (1937) no. 1, pp. 65-113 | DOI | Zbl

[Lib59] Libermann, P. Sur les automorphismes infinitésimaux des structures symplectiques et des structures de contact, Colloque Géom. Diff. Globale (Bruxelles, 1958), Centre Belge Rech. Math., Louvain, 1959, pp. 37-59 | MR | Zbl

[LMS03] Lochak, P.; Marco, J.-P.; Sauzin, D. On the splitting of invariant manifolds in multidimensional near-integrable Hamiltonian systems, Mem. Am. Math. Soc., Volume 163 (2003) no. 775 | Zbl

[LW98] Liverani, C.; Wojtkowski, M. P. Conformally symplectic dynamics and symmetry of the Lyapunov spectrum, Commun. Math. Phys., Volume 194 (1998) no. 1, pp. 47-60 | Zbl

[Mañ87] Mañé, R. Ergodic theory and differentiable dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 8, Springer, 1987 (translated from the Portuguese by Silvio Levy) | DOI | Zbl

[MBA72] Maslov, V. P.; Bouslaev, V. C.; Arnol’d, V. I. Théorie des perturbations et méthodes asymptotiques, Études mathématiques, Paris: Dunod; Gauthier-Villars, 1972 | Zbl

[Mil63] Milnor, J. Morse theory, Annals of Mathematics Studies, 51, Princeton University Press, 1963 (based on lecture notes by M. Spivak and R. Wells) | DOI | Zbl

[MS16] McDuff, D.; Salamon, D. Introduction to symplectic topology, Oxford Graduate Texts in Mathematics, 27, Oxford University Press, 2016 | Zbl

[MS17] Marò, S.; Sorrentino, A. Aubry–Mather theory for conformally symplectic systems, Commun. Math. Phys., Volume 354 (2017) no. 2, pp. 775-808 | DOI | Zbl

[NS60] Nemytskii, V. V.; Stepanov, V. V. Qualitative theory of differential equations, Princeton Mathematical Series, 22, Princeton University Press, 1960 | Zbl

[OV94] Ottolenghi, A.; Viterbo, C. Solutions généralisées pour l’équation de Hamilton-Jacobi dans le cas d’évolution (1994) (Mémoire de DEA, available on https://www.researchgate.net/profile/Alberto-Ottolenghi/publication/284170545)

[PPS03] Paternain, G. P.; Polterovich, L.; Siburg, K. F. Boundary rigidity for Lagrangian submanifolds, non-removable intersections, and Aubry–Mather theory, Mosc. Math. J., Volume 3 (2003) no. 2, pp. 593-619 (Dedicated to Vladimir I. Arnold on the occasion of his 65th birthday) | DOI | Zbl

[RS93] Robbin, J.; Salamon, D. The Maslov index for paths, Topology, Volume 32 (1993) no. 4, pp. 827-844 | DOI | Zbl

[Rue85] Ruelle, D. Rotation numbers for diffeomorphisms and flows, Ann. Inst. Henri Poincaré, Phys. Théor., Volume 42 (1985) no. 1, pp. 109-115 | Numdam | Zbl

[Sch57] Schwartzman, S. Asymptotic cycles, Ann. Math., Volume 66 (1957), pp. 270-284 | DOI | Zbl

[Sib04] Siburg, K. F. The principle of least action in geometry and dynamics, Lecture Notes in Mathematics, 1844, Springer, 2004 | DOI | Zbl

[Sik87] Sikorav, J.-C. Problèmes d’intersections et de points fixes en géométrie hamiltonienne, Comment. Math. Helv., Volume 62 (1987) no. 1, pp. 62-73 | DOI | Zbl

[Vit87] Viterbo, C. Intersection de sous-variétés lagrangiennes, fonctionnelles d’action et indice des systèmes hamiltoniens, Bull. Soc. Math. Fr., Volume 115 (1987) no. 3, pp. 361-390 | DOI | Numdam | Zbl

[Wei71] Weinstein, A. Symplectic manifolds and their Lagrangian submanifolds, Adv. Math., Volume 6 (1971), pp. 329-346 | DOI | MR | Zbl

[Wei14] Wei, Q. Viscosity solution of the Hamilton–Jacobi equation by a limiting minimax method, Nonlinearity, Volume 27 (2014) no. 1, pp. 17-41 | DOI | MR | Zbl