Braid stability and the Hofer metric
Annales Henri Lebesgue, Volume 7 (2024), pp. 521-581.

Metadata

Keywords Low-dimensional dynamical systems, Topological entropy, Hamiltonian systems, Floer homology

Abstract

In this article we show that the braid type of a set of 1-periodic orbits of a non-degenerate Hamiltonian diffeomorphism on a surface is stable under perturbations which are sufficiently small with respect to the Hofer metric d Hofer . We call this new phenomenon braid stability for the Hofer metric.

We apply braid stability to study the stability of the topological entropy h top of Hamiltonian diffeomorphisms on surfaces under small perturbations with respect to d Hofer . We show that h top is lower semicontinuous on the space of Hamiltonian diffeomorphisms of a closed surface endowed with the Hofer metric, and on the space of compactly supported diffeomorphisms of the two-dimensional disk 𝔻 endowed with the Hofer metric. This answers the two-dimensional case of a question of Polterovich.

En route to proving the lower semicontinuity of h top with respect to d Hofer , we prove that the topological entropy of a diffeomorphism φ on a compact surface can be recovered from the braid types realized by the periodic orbits of φ.


References

[AASS23] Abbondandolo, Alberto; Alves, Marcelo R. R.; Sağlam, Murat; Schlenk, Felix Entropy collapse versus entropy rigidity for Reeb and Finsler flows, Sel. Math., New Ser., Volume 29 (2023) no. 5, 67 | DOI | MR | Zbl

[ACH19] Alves, Marcelo R. R.; Colin, Vincent; Honda, Ko Topological entropy for Reeb vector fields in dimension three via open book decompositions, J. Éc. Polytech., Math., Volume 6 (2019), pp. 119-148 | DOI | Numdam | MR | Zbl

[ADMM22] Alves, Marcelo R. R.; Dahinden, Lucas; Meiwes, Matthias; Merlin, Louis C 0 -robustness of topological entropy for geodesic flows, J. Fixed Point Theory Appl., Volume 24 (2022) no. 2, 42 | DOI | Zbl

[ADMP23] Alves, Marcelo R. R.; Dahinden, Lucas; Meiwes, Matthias; Pirnapasov, Abror C 0 -stability of topological entropy for Reeb flows in dimension 3 (2023) | arXiv

[Alv16a] Alves, Marcelo R. R. Cylindrical contact homology and topological entropy, Geom. Topol., Volume 20 (2016) no. 6, pp. 3519-3569 | DOI | Zbl

[Alv16b] Alves, Marcelo R. R. Positive topological entropy for Reeb flows on 3-dimensional Anosov contact manifolds, J. Mod. Dyn., Volume 10 (2016), pp. 497-509 | DOI | MR | Zbl

[Alv19] Alves, Marcelo R. R. Legendrian contact homology and topological entropy, J. Topol. Anal., Volume 11 (2019) no. 1, pp. 53-108 | DOI | MR | Zbl

[AM19] Alves, Marcelo R. R.; Meiwes, Matthias Dynamically exotic contact spheres of dimensions 7, Comment. Math. Helv., Volume 94 (2019) no. 3, pp. 569-622 | DOI | MR | Zbl

[AP22] Alves, Marcelo R. R.; Pirnapasov, Abror Reeb orbits that force topological entropy, Ergodic Theory Dyn. Syst., Volume 42 (2022) no. 10, pp. 3025-3068 | DOI | MR | Zbl

[Bir75] Birman, Joan S. Braids, links, and mapping class groups, Annals of Mathematics Studies, 82, Princeton University Press; University of Tokyo Press, 1975 | DOI | MR | Zbl

[BM19] Brandenbursky, Michael; Marcinkowski, Michał Entropy and quasimorphisms, J. Mod. Dyn., Volume 15 (2019), pp. 143-163 | DOI | MR | Zbl

[Bow78] Bowen, Rufus Entropy and the fundamental group, The Structure of Attractors in Dynamical Systems (Markley, Nelson G.; Martin, John C.; Perrizo, William, eds.) (Lecture Notes in Mathematics), Volume 668, Springer, 1978, pp. 21-29 | DOI | Zbl

[Boy94] Boyland, Philip Topological methods in surface dynamics, Topology Appl., Volume 58 (1994) no. 3, pp. 223-298 | DOI | MR | Zbl

[BP07] Barreira, Luis; Pesin, Yakov Nonuniform hyperbolicity, Encyclopedia of Mathematics and Its Applications, 115, Cambridge University Press, 2007 (Dynamics of systems with nonzero Lyapunov exponents) | DOI | MR | Zbl

[Cho22] Chor, Arnon Eggbeater dynamics on symplectic surfaces of genus 2 and 3, Ann. Math. Qué. (2022), pp. 1-30 | DOI

[CM23] Chor, Arnon; Meiwes, Matthias Hofer’s geometry and topological entropy, Compos. Math., Volume 159 (2023) no. 6, pp. 1250-1299 | DOI | Zbl

[CO18] Cieliebak, Kai; Oancea, Alexandru Symplectic homology and the Eilenberg-Steenrod axioms, Algebr. Geom. Topol., Volume 18 (2018) no. 4, pp. 1953-2130 (Appendix written jointly with Peter Albers) | DOI | MR | Zbl

[Dah18] Dahinden, Lucas Lower complexity bounds for positive contactomorphisms, Isr. J. Math., Volume 224 (2018) no. 1, pp. 367-383 | DOI | MR | Zbl

[Dah20] Dahinden, Lucas Positive topological entropy of positive contactomorphisms, J. Symplectic Geom., Volume 18 (2020) no. 3, pp. 691-732 | DOI | MR | Zbl

[Dah21] Dahinden, Lucas C 0 -stability of topological entropy for contactomorphisms, Commun. Contemp. Math., Volume 23 (2021) no. 6, 2150015 | DOI | MR | Zbl

[EKP06] Eliashberg, Yakov; Kim, Sang Seon; Polterovich, Leonid Geometry of contact transformations and domains: orderability versus squeezing, Geom. Topol., Volume 10 (2006), pp. 1635-1747 | DOI | MR | Zbl

[FH88] Franks, John M.; Handel, Michael Entropy and exponential growth of π 1 in dimension two, Proc. Am. Math. Soc., Volume 102 (1988) no. 3, pp. 753-760 | DOI | MR | Zbl

[FH94] Floer, Andreas; Hofer, Helmut Symplectic homology. I. Open sets in C n , Math. Z., Volume 215 (1994) no. 1, pp. 37-88 | DOI | MR | Zbl

[FHS95] Floer, Andreas; Hofer, Helmut; Salamon, Dietmar Transversality in elliptic Morse theory for the symplectic action, Duke Math. J., Volume 80 (1995) no. 1, pp. 251-292 | DOI | MR | Zbl

[Flo88] Floer, Andreas The unregularized gradient flow of the symplectic action, Commun. Pure Appl. Math., Volume 41 (1988) no. 6, pp. 775-813 | DOI | MR | Zbl

[FM02] Franks, John M.; Misiurewicz, Michał Topological methods in dynamics, Handbook of dynamical systems, Vol. 1A, North-Holland, 2002, pp. 547-598 | DOI | MR | Zbl

[FS06] Frauenfelder, Urs; Schlenk, Felix Fiberwise volume growth via Lagrangian intersections, J. Symplectic Geom., Volume 4 (2006) no. 2, pp. 117-148 | DOI | Zbl

[Gin10] Ginzburg, Viktor L. The Conley conjecture, Ann. Math., Volume 172 (2010) no. 2, pp. 1127-1180 | DOI | MR | Zbl

[GVW15] van den Berg, Jan B.; Ghrist, Robert; Vandervorst, Robert C.; Wójcik, Wojciech Braid Floer homology, J. Differ. Equations, Volume 259 (2015) no. 5, pp. 1663-1721 | DOI | MR | Zbl

[Hal94] Hall, Toby The creation of horseshoes, Nonlinearity, Volume 7 (1994) no. 3, pp. 861-924 | DOI | MR | Zbl

[Hof90] Hofer, Helmut On the topological properties of symplectic maps, Proc. R. Soc. Edinb., Sect. A, Math., Volume 115 (1990) no. 1-2, pp. 25-38 | DOI | Zbl

[Kat80] Katok, Anatole Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publ. Math., Inst. Hautes Étud. Sci. (1980) no. 51, pp. 137-173 | DOI | Numdam | MR | Zbl

[Kat84] Katok, Anatole Nonuniform hyperbolicity and structure of smooth dynamical systems, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983), PWN, Warsaw (1984), pp. 1245-1253 | MR | Zbl

[KH95] Katok, Anatole; Hasselblatt, Boris Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and Its Applications, 54, Cambridge University Press, 1995 (with a supplementary chapter by Katok and Leonardo Mendoza) | DOI | MR | Zbl

[Kha21] Khanevsky, Michael Non-autonomous curves on surfaces, J. Mod. Dyn., Volume 17 (2021), pp. 305-317 | DOI | MR | Zbl

[KS21] Kislev, Asaf; Shelukhin, Egor Bounds on spectral norms and barcodes, Geom. Topol., Volume 25 (2021) no. 7, pp. 3257-3350 | DOI | MR | Zbl

[Mat05] Matsuoka, Takashi Periodic points and braid theory, Handbook of topological fixed point theory, Springer, 2005, pp. 171-216 | DOI | MR | Zbl

[Mei23] Meiwes, Matthias Topological entropy and orbit growth in link complements (2023) | arXiv

[Mis71] Misiurewicz, Michał On non-continuity of topological entropy, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys., Volume 19 (1971), pp. 319-320 | MR | Zbl

[MS11] Macarini, Leonardo; Schlenk, Felix Positive topological entropy of Reeb flows on spherizations, Math. Proc. Camb. Philos. Soc., Volume 151 (2011) no. 1, pp. 103-128 | DOI | Zbl

[New89] Newhouse, Sheldon E. Continuity properties of entropy, Ann. Math., Volume 129 (1989) no. 2, pp. 215-235 | DOI | MR | Zbl

[Nit71] Nitecki, Zbigniew On semi-stability for diffeomorphisms, Invent. Math., Volume 14 (1971), pp. 83-122 | DOI | MR | Zbl

[Pol01] Polterovich, Leonid The geometry of the group of symplectic diffeomorphisms, Lectures in Mathematics, ETH Zürich, Birkhäuser, 2001 | DOI | MR | Zbl

[PRSZ20] Polterovich, Leonid; Rosen, Daniel; Samvelyan, Karina; Zhang, Jun Topological Persistence in Geometry and Analysis, University Lecture Series, 74, American Mathematical Society, 2020 | DOI | Zbl

[PS16] Polterovich, Leonid; Shelukhin, Egor Autonomous Hamiltonian flows, Hofer’s geometry and persistence modules, Sel. Math., New Ser., Volume 22 (2016) no. 1, pp. 227-296 | DOI | Zbl

[Sch00] Schwarz, Matthias On the action spectrum for closed symplectically aspherical manifolds, Pac. J. Math., Volume 193 (2000) no. 2, pp. 419-461 | DOI | MR | Zbl

[Ush11] Usher, Michael Boundary depth in Floer theory and its applications to Hamiltonian dynamics and coisotropic submanifolds, Isr. J. Math., Volume 184 (2011), pp. 1-57 | DOI | MR | Zbl

[Yom87] Yomdin, Yosef Volume growth and entropy, Isr. J. Math., Volume 57 (1987) no. 3, pp. 285-300 | DOI | Zbl

[ÇGG21] Çineli, Erman; Ginzburg, Viktor L.; Gürel, Başak Z. Topological entropy of Hamiltonian diffeomorphisms: a persistence homology and Floer theory perspective (2021) | arXiv