Distribution of Ruelle resonances for real-analytic Anosov diffeomorphisms
Annales Henri Lebesgue, Volume 7 (2024), pp. 673-726.

Metadata

Keywords Anosov diffeomorphism, Ruelle resonances, Koopman operator, real-analytic

Abstract

We prove an upper bound for the number of Ruelle resonances for Koopman operators associated to real-analytic Anosov diffeomorphisms: in dimension d, the number of resonances larger than r is a 𝒪(|logr| d ) when r goes to 0. For each connected component of the space of real-analytic Anosov diffeomorphisms on a real-analytic manifold, we prove a dichotomy: either the exponent d in our bound is never optimal, or it is optimal on a dense subset. Using examples constructed by Bandtlow, Just and Slipantschuk, we see that we are always in the latter situation for connected components of the space of real-analytic Anosov diffeomorphisms on the 2-dimensional torus.


References

[Ano67] Anosov, Dmitriĭ V. Geodesic flows on closed Riemannian manifolds of negative curvature, Tr. Mat. Inst. Steklova, Volume 90 (1967), p. 209 | MR | Zbl

[Bal17] Baladi, Viviane The quest for the ultimate anisotropic Banach space, J. Stat. Phys., Volume 166 (2017) no. 3-4, pp. 525-557 | DOI | MR | Zbl

[Bal18] Baladi, Viviane Dynamical zeta functions and dynamical determinants for hyperbolic maps. A functional approach, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 68, Springer, 2018 | DOI | MR | Zbl

[Ban08] Bandtlow, Oscar F. Resolvent estimates for operators belonging to exponential classes, Integral Equations Oper. Theory, Volume 61 (2008) no. 1, pp. 21-43 | DOI | MR | Zbl

[BCHP11] Borthwick, D.; Christiansen, Tanya J.; Hislop, Peter D.; Perry, Peter A. Resonances for manifolds hyperbolic near infinity: optimal lower bounds on order of growth, Int. Math. Res. Not. (2011) no. 19, pp. 4431-4470 | DOI | MR | Zbl

[BKL02] Blank, Michael; Keller, Gerhard; Liverani, Carlangelo Ruelle–Perron–Frobenius spectrum for Anosov maps, Nonlinearity, Volume 15 (2002) no. 6, pp. 1905-1973 | DOI | MR | Zbl

[BN19] Bandtlow, Oscar F.; Naud, Frédéric Lower bounds for the Ruelle spectrum of analytic expanding circle maps, Ergodic Theory Dyn. Syst., Volume 39 (2019) no. 2, pp. 289-310 | DOI | MR | Zbl

[Bow08] Bowen, Rufus Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics, 470, Springer, 2008 (With a preface by David Ruelle, edited by Jean-René Chazottes) | DOI | MR | Zbl

[BT07] Baladi, Viviane; Tsujii, Masato Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms, Ann. Inst. Fourier, Volume 57 (2007) no. 1, pp. 127-154 | DOI | Numdam | MR | Zbl

[BT08] Baladi, Viviane; Tsujii, Masato Dynamical determinants and spectrum for hyperbolic diffeomorphisms, Geometric and probabilistic structures in dynamics (Contemporary Mathematics), Volume 469, American Mathematical Society, 2008, pp. 29-68 | DOI | MR | Zbl

[CH05] Christiansen, Tanya J.; Hislop, Peter D. The resonance counting function for Schrödinger operators with generic potentials, Math. Res. Lett., Volume 12 (2005) no. 5-6, pp. 821-826 | DOI | MR | Zbl

[CH10] Christiansen, Tanya J.; Hislop, Peter D. Maximal order of growth for the resonance counting functions for generic potentials in even dimensions, Indiana Univ. Math. J., Volume 59 (2010) no. 2, pp. 621-660 | DOI | MR | Zbl

[Chr05] Christiansen, Tanya J. Several complex variables and the distribution of resonances in potential scattering, Commun. Math. Phys., Volume 259 (2005) no. 3, pp. 711-728 | DOI | MR | Zbl

[Chr06] Christiansen, Tanya J. Several complex variables and the order of growth of the resonance counting function in Euclidean scattering, Int. Math. Res. Not. (2006), 43160 | DOI | MR | Zbl

[FG14] Farrell, F. Thomas; Gogolev, Andrey The space of Anosov diffeomorphisms, J. Lond. Math. Soc., Volume 89 (2014) no. 2, pp. 383-396 | DOI | MR | Zbl

[Flo71] Floret, Klaus Lokalkonvexe Sequenzen mit kompakten Abbildungen, J. Reine Angew. Math., Volume 247 (1971), pp. 155-195 | DOI | MR | Zbl

[FR06] Faure, Frédéric; Roy, Nicolas Ruelle–Pollicott resonances for real analytic hyperbolic maps, Nonlinearity, Volume 19 (2006) no. 6, pp. 1233-1252 | DOI | MR | Zbl

[Fra69] Franks, John Anosov diffeomorphisms on tori, Trans. Am. Math. Soc., Volume 145 (1969), pp. 117-124 | DOI | MR | Zbl

[Fri86] Fried, David The zeta functions of Ruelle and Selberg. I, Ann. Sci. Éc. Norm. Supér., Volume 19 (1986) no. 4, pp. 491-517 | DOI | Numdam | MR | Zbl

[Fri95] Fried, David Meromorphic zeta functions for analytic flows, Commun. Math. Phys., Volume 174 (1995) no. 1, pp. 161-190 | DOI | MR | Zbl

[FRS08] Faure, Frédéric; Roy, Nicolas; Sjöstrand, Johannes Semi-classical approach for Anosov diffeomorphisms and Ruelle resonances, Open Math. J., Volume 1 (2008), pp. 35-81 | DOI | MR | Zbl

[GBJ20] Guedes Bonthonneau, Yannick; Jézéquel, Malo FBI Transform in Gevrey Classes and Anosov Flows (2020) | arXiv

[Gev18] Gevrey, Maurice Sur la nature analytique des solutions des équations aux dérivées partielles. Premier mémoire, Ann. Sci. Éc. Norm. Supér., Volume 35 (1918), pp. 129-190 | DOI | Numdam | MR | Zbl

[GL06] Gouëzel, Sébastien; Liverani, Carlangelo Banach spaces adapted to Anosov systems, Ergodic Theory Dyn. Syst., Volume 26 (2006) no. 1, pp. 189-217 | DOI | MR | Zbl

[GL08] Gouëzel, Sébastien; Liverani, Carlangelo Compact locally maximal hyperbolic sets for smooth maps: fine statistical properties, J. Differ. Geom., Volume 79 (2008) no. 3, pp. 433-477 | DOI | MR | Zbl

[GS91] Guillemin, Victor; Stenzel, Matthew Grauert tubes and the homogeneous Monge–Ampère equation, J. Differ. Geom., Volume 34 (1991) no. 2, pp. 561-570 | DOI | MR | Zbl

[GS92] Guillemin, Victor; Stenzel, Matthew Grauert tubes and the homogeneous Monge–Ampère equation. II, J. Differ. Geom., Volume 35 (1992) no. 3, pp. 627-641 | DOI | MR | Zbl

[HK76] Hayman, Walter K.; Kennedy, P. B. Subharmonic functions. Vol. I, London Mathematical Society Monographs, 9, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976 | MR | Zbl

[HP70] Hirsch, Morris W.; Pugh, Charles C. Stable manifolds and hyperbolic sets, Global Analysis (Vols. XIV, XV, XVI, Berkeley, Calif., 1968) (Proceedings of Symposia in Pure Mathematics), American Mathematical Society (1970), pp. 133-163 | MR | Zbl

[Hör03] Hörmander, Lars The analysis of linear partial differential operators. I Distribution theory and Fourier analysis, Classics in Mathematics, Springer, 2003 Distribution theory and Fourier analysis, reprint of the second (1990) edition | DOI | MR | Zbl

[Jéz20] Jézéquel, Malo Local and global trace formulae for smooth hyperbolic diffeomorphisms, J. Spectr. Theory, Volume 10 (2020) no. 1, pp. 185-249 | DOI | MR | Zbl

[Jéz22] Jézéquel, Malo Upper bound on the number of resonances for even asymptotically hyperbolic manifolds with real-analytic ends (2022) | arXiv | DOI

[KH95] Katok, Anatole; Hasselblatt, Boris Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and Its Applications, 54, Cambridge University Press, 1995 (with a supplementary chapter by Katok and Leonardo Mendoza) | DOI | MR | Zbl

[Kit99a] Kitaev, Alexei Yu. Corrigendum: “Fredholm determinants for hyperbolic diffeomorphisms of finite smoothness”, Nonlinearity, Volume 12 (1999) no. 6, pp. 1717-1719 | DOI | MR | Zbl

[Kit99b] Kitaev, Alexei Yu. Fredholm determinants for hyperbolic diffeomorphisms of finite smoothness, Nonlinearity, Volume 12 (1999) no. 1, pp. 141-179 | DOI | MR | Zbl

[KM90] Kriegl, Andreas; Michor, Peter W. The convenient setting for real analytic mappings, Acta Math., Volume 165 (1990) no. 1-2, pp. 105-159 | DOI | MR | Zbl

[KM97] Kriegl, Andreas; Michor, Peter W. The convenient setting of global analysis, Mathematical Surveys and Monographs, 53, American Mathematical Society, 1997 | DOI | MR | Zbl

[Kom79] Komatsu, Hikosaburo The implicit function theorem for ultradifferentiable mappings, Proc. Japan Acad., Ser. A, Volume 55 (1979) no. 3, pp. 69-72 | DOI | MR | Zbl

[LG86] Lelong, Pierre; Gruman, Lawrence Entire functions of several complex variables, Grundlehren der Mathematischen Wissenschaften, 282, Springer, 1986 | DOI | MR | Zbl

[LT06] Liverani, Carlangelo; Tsujii, Masato Zeta functions and dynamical systems, Nonlinearity, Volume 19 (2006) no. 10, pp. 2467-2473 | DOI | MR | Zbl

[Man74] Manning, Anthony There are no new Anosov diffeomorphisms on tori, Am. J. Math., Volume 96 (1974), pp. 422-429 | DOI | MR | Zbl

[Mor58] Morrey, Charles B. jun. The analytic embedding of abstract real-analytic manifolds, Ann. Math., Volume 68 (1958), pp. 159-201 | DOI | MR | Zbl

[Nau12] Naud, Frédéric The Ruelle spectrum of generic transfer operators, Discrete Contin. Dyn. Syst., Volume 32 (2012) no. 7, pp. 2521-2531 | DOI | MR | Zbl

[Pie87] Pietsch, Albrecht Eigenvalues and s-numbers, Cambridge Studies in Advanced Mathematics, 13, Cambridge University Press, 1987, 360 pages | MR | Zbl

[PS22] Pollicott, Mark; Sewell, Benedict Explicit examples of resonances for Anosov maps of the torus, Nonlinearity, Volume 36 (2022), pp. 110-132 | DOI | Zbl

[Rue76] Ruelle, David Zeta-functions for expanding maps and Anosov flows, Invent. Math., Volume 34 (1976) no. 3, pp. 231-242 | DOI | MR | Zbl

[Rug92] Rugh, Hans H. The correlation spectrum for hyperbolic analytic maps, Nonlinearity, Volume 5 (1992) no. 6, pp. 1237-1263 | DOI | MR | Zbl

[Rug96] Rugh, Hans H. Generalized Fredholm determinants and Selberg zeta functions for Axiom A dynamical systems, Ergodic Theory Dyn. Syst., Volume 16 (1996) no. 4, pp. 805-819 | DOI | MR | Zbl

[SBJ17] Slipantschuk, Julia; Bandtlow, Oscar F.; Just, Wolfram Complete spectral data for analytic Anosov maps of the torus, Nonlinearity, Volume 30 (2017) no. 7, pp. 2667-2686 | DOI | MR | Zbl

[SBJ22] Slipantschuk, Julia; Bandtlow, Oscar F.; Just, Wolfram Resonances for rational Anosov maps on the torus (2022) | arXiv