On the signature of a positive braid
Annales Henri Lebesgue, Volume 7 (2024), pp. 823-839.

Metadata

Keywords Signature, positive braid, chessboard surface, Goeritz form

Abstract

We show that the signature of a positive braid link is bounded from below by one-quarter of its first Betti number. This equates to one-half of the optimal bound conjectured by Feller, who previously provided a bound of one-eighth.


References

[BDL18] Baader, S.; Dehornoy, P.; Liechti, L. Signature and concordance of positive knots, Bull. Lond. Math. Soc., Volume 50 (2018) no. 1, pp. 166-173 | DOI | Zbl

[Deh15] Dehornoy, P. On the zeroes of the Alexander polynomial of a Lorenz knot, Ann. Inst. Fourier, Volume 65 (2015) no. 2, pp. 509-548 | DOI | Numdam | Zbl

[Fel15] Feller, P. The signature of positive braids is linearly bounded by their genus, Int. J. Math., Volume 26 (2015) no. 10, p. 1550081 | DOI | Zbl

[Fel18] Feller, P. A sharp signature bound for positive four-braids, Q. J. Math., Volume 69 (2018) no. 1, pp. 271-283 | DOI | Zbl

[GL78] Gordon, C. McA.; Litherland, R. A. On the Signature of a Link, Invent. Math., Volume 47 (1978), pp. 53-69 | DOI | Zbl

[GL16] Gilmer, P.; Livingston, C. Signature jumps and Alexander polynomials for links, Proc. Am. Math. Soc., Volume 144 (2016) no. 12, pp. 5407-5417 | DOI | Zbl

[Goe33] Goeritz, L. Knoten und quadratische Formen, Math. Z., Volume 36 (1933), pp. 647-654 | DOI | Zbl

[KT76] Kauffman, L. H.; Taylor, L. R. Signature of links, Trans. Am. Math. Soc., Volume 216 (1976), pp. 351-365 | DOI | Zbl

[Lic97] Lickorish, W. B. R. An introduction to knot theory, Graduate Texts in Mathematics, 175, Springer, 1997 | DOI | Zbl

[Lie16] Liechti, L. Signature, positive Hopf plumbing and the Coxeter transformation (With appendix by Peter Feller and Livio Liechti), Osaka J. Math., Volume 53 (2016) no. 1, pp. 251-266 | Zbl

[Lie20] Liechti, L. On the genus defect of positive braid knots, Algebr. Geom. Topol., Volume 20 (2020) no. 1, pp. 403-428 | DOI | Zbl

[Mur65] Murasugi, K. On a certain numerical invariant of link types, Trans. Am. Math. Soc., Volume 117 (1965), pp. 387-422 | DOI | Zbl

[Rud82] Rudolph, L. Non-trivial positive braids have positive signature, Topology, Volume 21 (1982), pp. 325-327 | DOI | Zbl

[Sta78] Stallings, J. Constructions of fibred knots and links, Algebraic and Geometric Topology (Proceedings of Symposia in Pure Mathematics), Volume 32, American Mathematical Society (1978), pp. 55-60 | DOI | Zbl

[Sto08] Stoimenow, A. Bennequin’s inequality and the positivity of the signature, Trans. Am. Math. Soc., Volume 360 (2008) no. 10, pp. 5173-5199 | DOI | Zbl

[Tro62] Trotter, H. F. Homology of group systems with applications to knot theory, Ann. Math., Volume 76 (1962), pp. 464-498 | DOI | Zbl