Flat extensions of principal connections and the Chern–Simons 3-form
Annales Henri Lebesgue, Volume 8 (2025), pp. 1037-1059

Metadata

Keywords Chern–Simons invariants ,  principal connections ,  flat extensions

Abstract

We introduce the notion of a flat extension of a connection $\theta $ on a principal bundle. Roughly speaking, $\theta $ admits a flat extension if it arises as the pull-back of a component of a Maurer–Cartan form. For trivial bundles over closed oriented $3$-manifolds, we relate the existence of certain flat extensions to the vanishing of the Chern–Simons invariant associated with $\theta $. As an application, we recover the obstruction of Chern–Simons for the existence of a conformal immersion of a Riemannian $3$-manifold into Euclidean $4$-space. In addition, we obtain corresponding statements for a Lorentzian $3$-manifold, as well as a global obstruction for the existence of an equiaffine immersion into $\mathbb{R}^4$ of a $3$-manifold that is equipped with a torsion-free connection preserving a volume form.


References

[BE88] Burns, Daniel M. Jr.; Epstein, Charles L. A global invariant for three-dimensional CR-manifolds, Invent. Math., Volume 92 (1988) no. 2, pp. 333-348 erratum ibid. 39, p. 457 (2000) | DOI | MR | Zbl

[Car32] Cartan, Élie Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes. II, Ann. Sc. Norm. Super. Pisa, II. Ser., Volume 1 (1932) no. 4, pp. 333-354 | Numdam | MR | Zbl

[CS74] Chern, Shiing-Shen; Simons, James Characteristic forms and geometric invariants, Ann. Math. (2), Volume 99 (1974), pp. 48-69 | DOI | MR | Zbl

[FH91] Fulton, William; Harris, Joe Representation theory. A first course, Graduate Texts in Mathematics, 129, Springer, 1991 | DOI | MR | Zbl

[Fox05] Fox, Daniel J. F. Contact projective structures, Indiana Univ. Math. J., Volume 54 (2005) no. 6, pp. 1547-1598 | DOI | MR | Zbl

[Fre95] Freed, Daniel S. Classical Chern–Simons theory. I, Adv. Math., Volume 113 (1995) no. 2, pp. 237-303 | DOI | MR | Zbl

[GM14] Guillarmou, Colin; Moroianu, Sergiu Chern–Simons line bundle on Teichmüller space, Geom. Topol., Volume 18 (2014) no. 1, pp. 327-377 | Zbl | DOI | MR

[MP14] McIntyre, Andrew; Park, Jinsung Tau function and Chern–Simons invariant, Adv. Math., Volume 262 (2014), pp. 1-58 | DOI | MR | Zbl

[NS94] Nomizu, Katsumi; Sasaki, Takeshi Affine differential geometry. Geometry of affine immersions, Cambridge Tracts in Mathematics, 111, Cambridge University Press, 1994 | MR | Zbl

[Yos85] Yoshida, Tomoyoshi The η-invariant of hyperbolic 3-manifolds, Invent. Math., Volume 81 (1985) no. 3, pp. 473-514 | DOI | MR | Zbl

[ČS09] Čap, Andreas; Slovák, Jan Parabolic geometries. I Background and general theory, Mathematical Surveys and Monographs, 154, American Mathematical Society, 2009 | Zbl | DOI | MR