Manifestation of the topological index formula in quantum waves and geophysical waves
Annales Henri Lebesgue, Volume 6 (2023), pp. 449-492.

Metadata

Keywords PDEs in connection with geophysics, Molecular physics, K-theory, Fredholm operators, index theories, Semiclassical techniques

Abstract

Using semi-classical analysis in n we present a quite general model for which the topological index formula of Atiyah–Singer predicts a spectral flow with the transition of a finite number of eigenvalues between clusters (energy bands). This model corresponds to physical phenomena that are well observed for quantum energy levels of small molecules [FZ00, FZ01], also in geophysics for the oceanic or atmospheric equatorial waves [DMV17, Mat66] and expected to be observed in plasma physics [QF22].


References

[ASBVB13] Avila, Julio Cesar; Schulz-Baldes, Hermann; Villegas-Blas, Carlos Topological invariants of edge states for periodic two-dimensional models, Math. Phys. Anal. Geom., Volume 16 (2013) no. 2, pp. 137-170 | DOI | MR | Zbl

[Bal19] Bal, Guillaume Continuous bulk and interface description of topological insulators, J. Math. Phys., Volume 60 (2019) no. 8, 081506 | MR | Zbl

[BB85] Booss, Bernhelm; Bleecker, David D. Topology and analysis. The Atiyah–Singer index formula and gauge- theoretic physics. Transl. from the German by D. D. Bleecker and A. Mader., Universitext, Springer, 1985 | Zbl

[Ber84] Berry, Michael V. Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. Lond., Ser. A, Volume 392 (1984) no. 1802, pp. 45-57 | MR | Zbl

[BIZ80] Bessis, Daniel; Itzykson, Claude; Zuber, Jean-Bernard Quantum field theory techniques in graphical enumeration, Adv. Appl. Math., Volume 1 (1980) no. 2, pp. 109-157 | DOI | MR | Zbl

[BKR17] Bourne, Chris; Kellendonk, Johannes; Rennie, Adam The K-theoretic bulk-edge correspondence for topological insulators, Ann. Henri Poincaré, Volume 18 (2017) no. 5, pp. 1833-1866 | DOI | MR | Zbl

[BR18] Bourne, Chris; Rennie, Adam Chern numbers, localisation and the bulk-edge correspondence for continuous models of topological phases, Math. Phys. Anal. Geom., Volume 21 (2018) no. 3, 16 | MR | Zbl

[BSS21] Bols, Alex; Schenker, Jeffrey H.; Shapiro, Jacob Fredholm Homotopies for Strongly-Disordered 2D Insulators (2021) (https://arxiv.org/abs/2110.07068v1)

[DGH + 01] Dembowski, C.; Gräf, H.-D.; Harney, H. L.; Heine, A.; Heiss, W. D.; Rehfeld, H.; Richter, A. Experimental observation of the topological structure of exceptional points, Phys. Rev. Lett., Volume 86 (2001) no. 5, pp. 787-790 | DOI

[DMV17] Delplace, Pierre; Marston, J. B.; Venaille, Antoine Topological origin of equatorial waves, Science, Volume 358 (2017) no. 6366, pp. 1075-1077 | DOI | MR | Zbl

[Dro21] Drouot, Alexis Microlocal analysis of the bulk-edge correspondence, Commun. Math. Phys., Volume 383 (2021) no. 3, pp. 2069-2112 | DOI | MR | Zbl

[Eck94] Eckmann, Beno Hurwitz–Radon matrices revisited: from effective solution of the Hurwitz matrix equations to Bott periodicity, The Hilton symposium 1993. Topics in topology and group theory. In May of 1993 an international meeting on Algebra and topology was held at the University of Montréal, Canada, in celebration of Peter Hilton’s 70th birthday (CRM Proceedings & Lecture Notes), Volume 6, American Mathematical Society (1994), pp. 23-35 | MR | Zbl

[EGS05] Elgart, Alexander; Graf, Gian M.; Schenker, Jeffrey H. Equality of the bulk and edge Hall conductances in a mobility gap, Commun. Math. Phys., Volume 259 (2005) no. 1, pp. 185-221 | DOI | MR | Zbl

[Fau06] Faure, Frédéric Aspects topologiques et chaotiques en mécanique quantique, Ph. D. Thesis, Université Joseph Fourier, Grenoble, France (2006) (https://www-fourier.ujf-grenoble.fr/~faure/habilitation/habilitation_manuscrit.pdf)

[Fau18] Faure, Frédéric Exposé sur le théoreme adiabatique en mécanique quantique. Description par l’analyse semiclassique, 2018 (https://www-fourier.ujf-grenoble.fr/~faure/articles/expose_thm_adiabatique.pdf)

[Fau19] Faure, Frédéric Manifestation of the topological index formula in quantum waves and geophysical waves (2019) (https://arxiv.org/abs/1901.10592)

[Fed96] Fedosov, Boris Deformation Quantization and Index Theory, Mathematical Topics, Akademie Verlag, 1996 | MR | Zbl

[FT17] Faure, Frédéric; Tsujii, M. Fractal Weyl law for the Ruelle spectrum of Anosov flows (2017) (https://arxiv.org/abs/1706.09307)

[FZ00] Faure, Frédéric; Zhilinskii, Boris Topological Chern indices in molecular spectra, Phys. Rev. Lett., Volume 85 (2000) no. 5, pp. 960-963 | DOI

[FZ01] Faure, Frédéric; Zhilinskii, Boris I. Topological properties of the Born–Oppenheimer approximation and implications for the exact spectrum, Lett. Math. Phys., Volume 55 (2001) no. 3, pp. 219-238 | DOI | MR | Zbl

[FZ02a] Faure, Frédéric; Zhilinskii, Boris I. Qualitative features of intra-molecular dynamics. What can be learned from symmetry and topology, Acta Appl. Math., Volume 70 (2002) no. 1, pp. 265-282 | DOI | MR | Zbl

[FZ02b] Faure, Frédéric; Zhilinskii, Boris I. Topologically coupled energy bands in molecules., Phys. Lett., A, Volume 302 (2002) no. 5-6, pp. 242-252 | DOI | Zbl

[GP13] Graf, Gian Michele; Porta, Marcello Bulk-edge correspondence for two-dimensional topological insulators, Commun. Math. Phys., Volume 324 (2013) no. 3, pp. 851-895 | DOI | MR | Zbl

[Hat98] Hatcher, Allen Vector Bundles and K-Theory (1998) (https://pi.math.cornell.edu/~hatcher/VBKT/VBpage.html)

[Hat02] Hatcher, Allen Algebraic topology, Cambridge University Press, 2002 | MR | Zbl

[Haw00] Hawkins, Eli Geometric quantization of vector bundles and the correspondence with deformation quantization, Commun. Math. Phys., Volume 215 (2000) no. 2, pp. 409-432 | DOI | MR | Zbl

[Hör79] Hörmander, Lars The Weyl calculus of pseudo-differential operators, Commun. Pure Appl. Math., Volume 32 (1979) no. 3, pp. 359-443 | DOI | Zbl

[Hör83] Hörmander, Lars The analysis of linear partial differential operators. II: Differential operators with constant coefficients, Grundlehren der Mathematischen Wissenschaften, 257, Springer, 1983 | Zbl

[Kub17] Kubota, Yosuke Controlled topological phases and bulk-edge correspondence, Commun. Math. Phys., Volume 349 (2017) no. 2, pp. 493-525 | DOI | MR | Zbl

[Mar02] Martinez, André An Introduction to Semiclassical and Microlocal Analysis, Universitext, Springer, 2002 | DOI | Zbl

[Mat66] Matsuno, Taroh Quasi-geostrophic motions in the equatorial area, J. Meteorol. Soc. Jpn. Ser. II, Volume 44 (1966) no. 1, pp. 25-43 | DOI

[NR11] Nicola, Fabio; Rodino, Luigi Global pseudo-differential calculus on Euclidean spaces, Pseudo-Differential Operators. Theory and Applications, 4, Springer, 2011 | Zbl

[PR03] Püttmann, Thomas; Rigas, A. Presentations of the first homotopy groups of the unitary groups, Comment. Math. Helv., Volume 78 (2003) no. 3, pp. 648-662 | DOI | MR | Zbl

[PS95] Peskin, Michael E.; Schroeder, Daniel V. An introduction to quantum field theory, 94, Avalon Publishing, 1995

[PSB16] Prodan, Emil; Schulz-Baldes, Hermann Bulk and boundary invariants for complex topological insulators. From K-theory to physics, Mathematical Physics Studies, Springer, 2016 | DOI | Zbl

[QF22] Qin, Hong; Fu, Yichen Topological Langmuir-cyclotron wave (2022) (https://arxiv.org/abs/2205.02381) | DOI

[RS72] Reed, Michael; Simon, Barry Mathematical methods in physics, vol I: Functional Analysis, Academic Press Inc., 1972

[ST19] Shapiro, Jacob; Tauber, Clément Strongly disordered floquet topological systems, Ann. Henri Poincaré, Volume 20 (2019) no. 6, pp. 1837-1875 | DOI | MR | Zbl

[Val17] Vallis, Geoffrey K. Atmospheric and oceanic fluid dynamics. Fundamentals and large-scale circulation, Cambridge University Press, 2017 | DOI | Zbl

[Zwo12] Zworski, Maciej Semiclassical Analysis, Graduate Studies in Mathematics, 138, American Mathematical Society, 2012 | DOI | Zbl