Convergence of states for polaron models in the classical limit
Annales Henri Lebesgue, Volume 8 (2025), pp. 661-697

Metadata

Keywords Polaron, Nelson model, Semi-classical analysis, quantum de Finetti measures

Abstract

We consider the quasi-classical limit of Nelson-type regularized polaron models describing a particle interacting with a quantized bosonic field. We break translation-invariance by adding an attractive external potential decaying at infinity, acting on the particle. In the strong coupling limit where the field behaves classically we prove that the model’s energy quasi-minimizers strongly converge to ground states of the limiting Pekar-like non-linear model. This holds for arbitrarily small external attractive potentials, hence this binding is fully due to the interaction with the bosonic field. We use a new approach to the construction of quasi-classical measures to revisit energy convergence, and a localization method in a concentration-compactness type argument to obtain convergence of states.


References

[Amm00] Ammari, Zied Asymptotic completeness for a renormalized nonrelativistic Hamiltonian in quantum field theory: The Nelson model, Math. Phys. Anal. Geom., Volume 3 (2000) no. 3, pp. 217-285 | MR | DOI | Zbl

[Amm04] Ammari, Zied Scattering theory for a class of fermionic Pauli-Fierz models, J. Funct. Anal., Volume 208 (2004) no. 2, pp. 302-359 | MR | DOI | Zbl

[AN08] Ammari, Zied; Nier, Francis Mean field limit for bosons and infinite dimensional phase-space analysis, Ann. Henri Poincaré, Volume 9 (2008) no. 8, pp. 1503-1574 | MR | DOI | Zbl

[AN09] Ammari, Zied; Nier, Francis Mean field limit for bosons and propagation of Wigner measures, J. Math. Phys., Volume 50 (2009) no. 4, 042107, 16 pages | MR | DOI | Zbl

[BFP23] Breteaux, Sébastien; Faupin, Jérémy; Payet, Jimmy Quasi-classical Ground States. I. Linearly Coupled Pauli–Fierz Hamiltonians, Doc. Math., Volume 28 (2023) no. 5, pp. 1191-1233 | DOI | Zbl

[BFP25] Breteaux, Sébastien; Faupin, Jérémy; Payet, Jimmy Quasi-classical Ground States. II. Standard Model of Non-relativistic QED, Ann. Inst. Fourier, Volume 75 (2025) no. 3, pp. 1177-1220 | DOI | Zbl

[BS01] Baumgartner, Bernhard; Seiringer, Robert Atoms with bosonic “electrons” in strong magnetic fields, Ann. Henri Poincaré, Volume 2 (2001) no. 1, pp. 41-76 | MR | DOI | Zbl

[BS23] Brooks, Morris; Seiringer, Robert The Fröhlich Polaron at Strong Coupling – Part I: The Quantum Correction to the Classical Energy, Commun. Math. Phys., Volume 404 (2023) no. 1, pp. 287-337 | DOI | Zbl

[CF18] Correggi, Michele; Falconi, Marco Effective potentials generated by field interaction in the quasi-classical limit, Ann. Henri Poincaré, Volume 19 (2018) no. 1, pp. 189-235 | MR | DOI | Zbl

[CFO19] Correggi, Michele; Falconi, Marco; Olivieri, Marco Magnetic Schrödinger operators as the quasi-classical limit of Pauli–Fierz-type models, J. Spectr. Theory, Volume 9 (2019) no. 4, pp. 1287-1325 | MR | DOI | Zbl

[CFO23a] Correggi, Michele; Falconi, Marco; Olivieri, Marco Ground state properties in the quasiclassical regime, Anal. PDE, Volume 16 (2023) no. 8, pp. 1745-1798 | MR | DOI | Zbl

[CFO23b] Correggi, Michele; Falconi, Marco; Olivieri, Marco Quasi-classical dynamics, J. Eur. Math. Soc., Volume 25 (2023) no. 2, pp. 731-783 | MR | DOI | Zbl

[Del67] Dell’Antonio, Gian F. On the limits of sequences of normal states, Commun. Pure Appl. Math., Volume 20 (1967), pp. 413-429 | DOI | Zbl

[DG99] Dereziński, Jan; Gérard, Christian Asymptotic completeness in quantum field theory. Massive Pauli–Fierz Hamiltonians, Rev. Math. Phys., Volume 11 (1999) no. 4, pp. 383-450 | MR | DOI | Zbl

[DV83] Donsker, Monroe D.; Varadhan, S. R. Srinivasa Asymptotics for the polaron, Commun. Pure Appl. Math., Volume 36 (1983), pp. 505-528 | MR | DOI | Zbl

[Fal18a] Falconi, Marco Concentration of cylindrical Wigner measures, Commun. Contemp. Math., Volume 20 (2018) no. 5, 1750055, 22 pages | Zbl | MR | DOI

[Fal18b] Falconi, Marco Cylindrical Wigner measures, Doc. Math., Volume 23 (2018), pp. 1677-1756 | MR | DOI | Zbl

[FJL07a] Fröhlich, Jürg; Jonsson, B. Lars G.; Lenzmann, Enno Boson stars as solitary waves, Commun. Math. Phys., Volume 274 (2007) no. 1, pp. 1-30 | MR | DOI | Zbl

[FJL07b] Fröhlich, Jürg; Jonsson, B. Lars G.; Lenzmann, Enno Effective dynamics for Boson stars, Nonlinearity, Volume 20 (2007) no. 5, pp. 1031-1075 | MR | DOI | Zbl

[FLMP23] Falconi, Marco; Leopold, Nikolai; Mitrouskas, David; Petrat, Sören Bogoliubov Dynamics and Higher-order Corrections for the Regularized Nelson Model, Rev. Math. Phys., Volume 35 (2023) no. 4, 2350006, 36 pages | DOI | Zbl

[FLV88] Fannes, Mark; Lewis, John T.; Verbeure, André F. Symmetric states of composite systems, Lett. Math. Phys., Volume 15 (1988) no. 3, pp. 255-260 | MR | DOI | Zbl

[Fol99] Folland, Gerald B. Real analysis. Modern techniques and their applications, Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs and Tracts, John Wiley & Sons, 1999 | MR | Zbl

[FS21a] Feliciangeli, Dario; Seiringer, Robert The strongly coupled polaron on the torus: quantum corrections to the Pekar asymptotics, Arch. Ration. Mech. Anal., Volume 242 (2021) no. 3, pp. 1835-1906 | MR | DOI | Zbl

[FS21b] Frank, Rupert L.; Seiringer, Robert Quantum corrections to the Pekar asymptotics of a strongly coupled polaron, Commun. Pure Appl. Math., Volume 74 (2021) no. 3, pp. 544-588 | MR | DOI | Zbl

[FZ17] Frank, Rupert L.; Zhou, Gang Derivation of an effective evolution equation for a strongly coupled polaron, Anal. PDE, Volume 10 (2017) no. 2, pp. 379-422 | MR | DOI | Zbl

[Gri17] Griesemer, Marcel On the dynamics of polarons in the strong-coupling limit, Rev. Math. Phys., Volume 29 (2017) no. 10, 1750030, 21 pages | MR | DOI | Zbl

[GSS17] Griesemer, Marcel; Schmid, Jochen; Schneider, Guido On the dynamics of the mean-field polaron in the high-frequency limit, Lett. Math. Phys., Volume 107 (2017) no. 10, pp. 1809-1821 | MR | DOI | Zbl

[HLS09a] Hainzl, Christian; Lewin, Mathieu; Solovej, Jan Philip The thermodynamic limit of quantum Coulomb systems. I: General theory, Adv. Math., Volume 221 (2009) no. 2, pp. 454-487 | DOI | MR | Zbl

[HLS09b] Hainzl, Christian; Lewin, Mathieu; Solovej, Jan Philip The thermodynamic limit of quantum Coulomb systems. II: Applications, Adv. Math., Volume 221 (2009) no. 2, pp. 488-546 | DOI | Zbl | MR

[HvNVW16] Hytönen, Tuomas; van Neerven, Jan; Veraar, Mark; Weis, Lutz Analysis in Banach spaces. Vol. I. Martingales and Littlewood–Paley theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 63, Springer, 2016 | MR | DOI | Zbl

[Lew11] Lewin, Mathieu Geometric methods for nonlinear many-body quantum systems, J. Funct. Anal., Volume 260 (2011) no. 12, pp. 3535-3595 | MR | DOI | Zbl

[Lie77] Lieb, Elliott H. Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Stud. Appl. Math., Volume 57 (1977), pp. 93-105 | DOI | Zbl | MR

[Lio80] Lions, Pierre-Louis The Choquard equation and related questions, Nonlinear Anal., Theory Methods Appl., Volume 4 (1980), pp. 1063-1072 | DOI | Zbl | MR

[LL11] Lenzmann, Enno; Lewin, Mathieu On singularity formation for the L 2 -critical boson star equation, Nonlinearity, Volume 24 (2011) no. 12, pp. 3515-3540 | DOI | Zbl | MR

[LMS21] Leopold, Nikolai; Mitrouskas, David; Seiringer, Robert Derivation of the Landau–Pekar equations in a many-body mean-field limit, Arch. Ration. Mech. Anal., Volume 240 (2021) no. 1, pp. 383-417 | DOI | Zbl

[LNR14] Lewin, Mathieu; Nam, Phan Thành; Rougerie, Nicolas Derivation of Hartree’s theory for generic mean-field Bose systems, Adv. Math., Volume 254 (2014), pp. 570-621 | DOI | Zbl | MR

[LNR15a] Lewin, Mathieu; Nam, Phan Thành; Rougerie, Nicolas Derivation of nonlinear Gibbs measures from many-body quantum mechanics, J. Éc. Polytech., Math., Volume 2 (2015), pp. 65-115 | DOI | Zbl | MR | Numdam

[LNR15b] Lewin, Mathieu; Nam, Phan Thành; Rougerie, Nicolas Remarks on the quantum de Finetti theorem for bosonic systems, AMRX, Appl. Math. Res. Express, Volume 2015 (2015) no. 1, pp. 48-63 | DOI | Zbl | MR

[LR13a] Lewin, Mathieu; Rougerie, Nicolas Derivation of Pekar’s polarons from a microscopic model of quantum crystal, SIAM J. Math. Anal., Volume 45 (2013) no. 3, pp. 1267-1301 | DOI | Zbl | MR

[LR13b] Lewin, Mathieu; Rougerie, Nicolas On the binding of polarons in a mean-field quantum crystal, ESAIM, Control Optim. Calc. Var., Volume 19 (2013) no. 3, pp. 629-656 | DOI | Zbl | MR | Numdam

[LRSS21] Leopold, Nikolai; Rademacher, Simone; Schlein, Benjamin; Seiringer, Robert The Landau–Pekar equations: Adiabatic theorem and accuracy, Anal. PDE, Volume 14 (2021) no. 7, pp. 2079-2100 | DOI | Zbl

[LS10] Lieb, Elliott H.; Seiringer, Robert The stability of matter in quantum mechanics, Cambridge University Press, 2010 | DOI | Zbl | MR

[LT97] Lieb, Elliott H.; Thomas, Lawrence E. Exact ground state energy of the strong-coupling polaron, Commun. Math. Phys., Volume 183 (1997) no. 3, pp. 511-519 | DOI | Zbl | MR

[LY58] Lieb, Elliott H.; Yamazaki, Kazuo Ground-state energy and effective mass of the polaron, Phys. Rev., II. Ser., Volume 111 (1958), pp. 728-733 | DOI | Zbl

[MS07] Miyao, Tadahiro; Spohn, Herbert The bipolaron in the strong coupling limit, Ann. Henri Poincaré, Volume 8 (2007) no. 7, pp. 1333-1370 | MR | DOI | Zbl

[Møl06] Møller, Jacob S. The polaron revisited, Rev. Math. Phys., Volume 18 (2006) no. 5, pp. 485-517 | MR | DOI | Zbl

[Ric16] Ricaud, Julien On uniqueness and non-degeneracy of anisotropic polarons, Nonlinearity, Volume 29 (2016) no. 5, pp. 1507-1536 | MR | DOI | Zbl

[Ros71] Rosen, Lon The (ϕ 2n ) 2 quantum field theory: Higher order estimates, Commun. Pure Appl. Math., Volume 24 (1971) no. 3, pp. 417-457 | MR | DOI

[Rou16] Rougerie, Nicolas Théorèmes de de Finetti, limites de champ moyen et condensation de Bose–Einstein, Les Cours Peccot, Spartacus-IDH, 2016 | Zbl

[Rou20] Rougerie, Nicolas Scaling limits of bosonic ground states, from many-body to non-linear Schrödinger, EMS Surv. Math. Sci., Volume 7 (2020) no. 2, pp. 253-408 | MR | DOI | Zbl

[RS78] Reed, Michael; Simon, Barry Methods of modern mathematical physics. IV: Analysis of operators, Academic Press Inc., 1978 | Zbl | MR

[Rud91] Rudin, Walter Functional Analysis, International Series in Pure and Applied Mathematics, McGraw-Hill, 1991 | Zbl | MR

[Sch60] Schatten, Robert Norm Ideals of Completely Continuous Operators, Ergebnisse der Mathematik und ihrer Grenzgebiete, 27, Springer, 1960 | MR | Zbl | DOI

[Sei02] Seiringer, Robert Gross–Pitaevskii theory of the rotating Bose gas, Commun. Math. Phys., Volume 229 (2002) no. 3, pp. 491-509 | MR | DOI | Zbl

[Sei21] Seiringer, Robert The polaron at strong coupling, Rev. Math. Phys., Volume 33 (2021) no. 1, 2060012, 21 pages | DOI | Zbl | MR

[Sim79] Simon, Barry Trace ideals and their applications, London Mathematical Society Lecture Note Series, 35, Cambridge University Press; London Mathematical Society, 1979 | MR | Numdam | Zbl

[Sko74] Skorokhod, Anatoliĭ V. Integration in Hilbert space, Ergebnisse der Mathematik und ihrer Grenzgebiete, 79, Springer, 1974 | MR | Zbl