Metadata
Abstract
We consider the quasi-classical limit of Nelson-type regularized polaron models describing a particle interacting with a quantized bosonic field. We break translation-invariance by adding an attractive external potential decaying at infinity, acting on the particle. In the strong coupling limit where the field behaves classically we prove that the model’s energy quasi-minimizers strongly converge to ground states of the limiting Pekar-like non-linear model. This holds for arbitrarily small external attractive potentials, hence this binding is fully due to the interaction with the bosonic field. We use a new approach to the construction of quasi-classical measures to revisit energy convergence, and a localization method in a concentration-compactness type argument to obtain convergence of states.
References
[Amm00] Asymptotic completeness for a renormalized nonrelativistic Hamiltonian in quantum field theory: The Nelson model, Math. Phys. Anal. Geom., Volume 3 (2000) no. 3, pp. 217-285 | MR | DOI | Zbl
[Amm04] Scattering theory for a class of fermionic Pauli-Fierz models, J. Funct. Anal., Volume 208 (2004) no. 2, pp. 302-359 | MR | DOI | Zbl
[AN08] Mean field limit for bosons and infinite dimensional phase-space analysis, Ann. Henri Poincaré, Volume 9 (2008) no. 8, pp. 1503-1574 | MR | DOI | Zbl
[AN09] Mean field limit for bosons and propagation of Wigner measures, J. Math. Phys., Volume 50 (2009) no. 4, 042107, 16 pages | MR | DOI | Zbl
[BFP23] Quasi-classical Ground States. I. Linearly Coupled Pauli–Fierz Hamiltonians, Doc. Math., Volume 28 (2023) no. 5, pp. 1191-1233 | DOI | Zbl
[BFP25] Quasi-classical Ground States. II. Standard Model of Non-relativistic QED, Ann. Inst. Fourier, Volume 75 (2025) no. 3, pp. 1177-1220 | DOI | Zbl
[BS01] Atoms with bosonic “electrons” in strong magnetic fields, Ann. Henri Poincaré, Volume 2 (2001) no. 1, pp. 41-76 | MR | DOI | Zbl
[BS23] The Fröhlich Polaron at Strong Coupling – Part I: The Quantum Correction to the Classical Energy, Commun. Math. Phys., Volume 404 (2023) no. 1, pp. 287-337 | DOI | Zbl
[CF18] Effective potentials generated by field interaction in the quasi-classical limit, Ann. Henri Poincaré, Volume 19 (2018) no. 1, pp. 189-235 | MR | DOI | Zbl
[CFO19] Magnetic Schrödinger operators as the quasi-classical limit of Pauli–Fierz-type models, J. Spectr. Theory, Volume 9 (2019) no. 4, pp. 1287-1325 | MR | DOI | Zbl
[CFO23a] Ground state properties in the quasiclassical regime, Anal. PDE, Volume 16 (2023) no. 8, pp. 1745-1798 | MR | DOI | Zbl
[CFO23b] Quasi-classical dynamics, J. Eur. Math. Soc., Volume 25 (2023) no. 2, pp. 731-783 | MR | DOI | Zbl
[Del67] On the limits of sequences of normal states, Commun. Pure Appl. Math., Volume 20 (1967), pp. 413-429 | DOI | Zbl
[DG99] Asymptotic completeness in quantum field theory. Massive Pauli–Fierz Hamiltonians, Rev. Math. Phys., Volume 11 (1999) no. 4, pp. 383-450 | MR | DOI | Zbl
[DV83] Asymptotics for the polaron, Commun. Pure Appl. Math., Volume 36 (1983), pp. 505-528 | MR | DOI | Zbl
[Fal18a] Concentration of cylindrical Wigner measures, Commun. Contemp. Math., Volume 20 (2018) no. 5, 1750055, 22 pages | Zbl | MR | DOI
[Fal18b] Cylindrical Wigner measures, Doc. Math., Volume 23 (2018), pp. 1677-1756 | MR | DOI | Zbl
[FJL07a] Boson stars as solitary waves, Commun. Math. Phys., Volume 274 (2007) no. 1, pp. 1-30 | MR | DOI | Zbl
[FJL07b] Effective dynamics for Boson stars, Nonlinearity, Volume 20 (2007) no. 5, pp. 1031-1075 | MR | DOI | Zbl
[FLMP23] Bogoliubov Dynamics and Higher-order Corrections for the Regularized Nelson Model, Rev. Math. Phys., Volume 35 (2023) no. 4, 2350006, 36 pages | DOI | Zbl
[FLV88] Symmetric states of composite systems, Lett. Math. Phys., Volume 15 (1988) no. 3, pp. 255-260 | MR | DOI | Zbl
[Fol99] Real analysis. Modern techniques and their applications, Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs and Tracts, John Wiley & Sons, 1999 | MR | Zbl
[FS21a] The strongly coupled polaron on the torus: quantum corrections to the Pekar asymptotics, Arch. Ration. Mech. Anal., Volume 242 (2021) no. 3, pp. 1835-1906 | MR | DOI | Zbl
[FS21b] Quantum corrections to the Pekar asymptotics of a strongly coupled polaron, Commun. Pure Appl. Math., Volume 74 (2021) no. 3, pp. 544-588 | MR | DOI | Zbl
[FZ17] Derivation of an effective evolution equation for a strongly coupled polaron, Anal. PDE, Volume 10 (2017) no. 2, pp. 379-422 | MR | DOI | Zbl
[Gri17] On the dynamics of polarons in the strong-coupling limit, Rev. Math. Phys., Volume 29 (2017) no. 10, 1750030, 21 pages | MR | DOI | Zbl
[GSS17] On the dynamics of the mean-field polaron in the high-frequency limit, Lett. Math. Phys., Volume 107 (2017) no. 10, pp. 1809-1821 | MR | DOI | Zbl
[HLS09a] The thermodynamic limit of quantum Coulomb systems. I: General theory, Adv. Math., Volume 221 (2009) no. 2, pp. 454-487 | DOI | MR | Zbl
[HLS09b] The thermodynamic limit of quantum Coulomb systems. II: Applications, Adv. Math., Volume 221 (2009) no. 2, pp. 488-546 | DOI | Zbl | MR
[HvNVW16] Analysis in Banach spaces. Vol. I. Martingales and Littlewood–Paley theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 63, Springer, 2016 | MR | DOI | Zbl
[Lew11] Geometric methods for nonlinear many-body quantum systems, J. Funct. Anal., Volume 260 (2011) no. 12, pp. 3535-3595 | MR | DOI | Zbl
[Lie77] Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Stud. Appl. Math., Volume 57 (1977), pp. 93-105 | DOI | Zbl | MR
[Lio80] The Choquard equation and related questions, Nonlinear Anal., Theory Methods Appl., Volume 4 (1980), pp. 1063-1072 | DOI | Zbl | MR
[LL11] On singularity formation for the -critical boson star equation, Nonlinearity, Volume 24 (2011) no. 12, pp. 3515-3540 | DOI | Zbl | MR
[LMS21] Derivation of the Landau–Pekar equations in a many-body mean-field limit, Arch. Ration. Mech. Anal., Volume 240 (2021) no. 1, pp. 383-417 | DOI | Zbl
[LNR14] Derivation of Hartree’s theory for generic mean-field Bose systems, Adv. Math., Volume 254 (2014), pp. 570-621 | DOI | Zbl | MR
[LNR15a] Derivation of nonlinear Gibbs measures from many-body quantum mechanics, J. Éc. Polytech., Math., Volume 2 (2015), pp. 65-115 | DOI | Zbl | MR | Numdam
[LNR15b] Remarks on the quantum de Finetti theorem for bosonic systems, AMRX, Appl. Math. Res. Express, Volume 2015 (2015) no. 1, pp. 48-63 | DOI | Zbl | MR
[LR13a] Derivation of Pekar’s polarons from a microscopic model of quantum crystal, SIAM J. Math. Anal., Volume 45 (2013) no. 3, pp. 1267-1301 | DOI | Zbl | MR
[LR13b] On the binding of polarons in a mean-field quantum crystal, ESAIM, Control Optim. Calc. Var., Volume 19 (2013) no. 3, pp. 629-656 | DOI | Zbl | MR | Numdam
[LRSS21] The Landau–Pekar equations: Adiabatic theorem and accuracy, Anal. PDE, Volume 14 (2021) no. 7, pp. 2079-2100 | DOI | Zbl
[LS10] The stability of matter in quantum mechanics, Cambridge University Press, 2010 | DOI | Zbl | MR
[LT97] Exact ground state energy of the strong-coupling polaron, Commun. Math. Phys., Volume 183 (1997) no. 3, pp. 511-519 | DOI | Zbl | MR
[LY58] Ground-state energy and effective mass of the polaron, Phys. Rev., II. Ser., Volume 111 (1958), pp. 728-733 | DOI | Zbl
[MS07] The bipolaron in the strong coupling limit, Ann. Henri Poincaré, Volume 8 (2007) no. 7, pp. 1333-1370 | MR | DOI | Zbl
[Møl06] The polaron revisited, Rev. Math. Phys., Volume 18 (2006) no. 5, pp. 485-517 | MR | DOI | Zbl
[Ric16] On uniqueness and non-degeneracy of anisotropic polarons, Nonlinearity, Volume 29 (2016) no. 5, pp. 1507-1536 | MR | DOI | Zbl
[Ros71] The quantum field theory: Higher order estimates, Commun. Pure Appl. Math., Volume 24 (1971) no. 3, pp. 417-457 | MR | DOI
[Rou16] Théorèmes de de Finetti, limites de champ moyen et condensation de Bose–Einstein, Les Cours Peccot, Spartacus-IDH, 2016 | Zbl
[Rou20] Scaling limits of bosonic ground states, from many-body to non-linear Schrödinger, EMS Surv. Math. Sci., Volume 7 (2020) no. 2, pp. 253-408 | MR | DOI | Zbl
[RS78] Methods of modern mathematical physics. IV: Analysis of operators, Academic Press Inc., 1978 | Zbl | MR
[Rud91] Functional Analysis, International Series in Pure and Applied Mathematics, McGraw-Hill, 1991 | Zbl | MR
[Sch60] Norm Ideals of Completely Continuous Operators, Ergebnisse der Mathematik und ihrer Grenzgebiete, 27, Springer, 1960 | MR | Zbl | DOI
[Sei02] Gross–Pitaevskii theory of the rotating Bose gas, Commun. Math. Phys., Volume 229 (2002) no. 3, pp. 491-509 | MR | DOI | Zbl
[Sei21] The polaron at strong coupling, Rev. Math. Phys., Volume 33 (2021) no. 1, 2060012, 21 pages | DOI | Zbl | MR
[Sim79] Trace ideals and their applications, London Mathematical Society Lecture Note Series, 35, Cambridge University Press; London Mathematical Society, 1979 | MR | Numdam | Zbl
[Sko74] Integration in Hilbert space, Ergebnisse der Mathematik und ihrer Grenzgebiete, 79, Springer, 1974 | MR | Zbl