Metadata
Abstract
In the search of a projective analog of Kunz’s theorem and a Frobenius-theoretic analog of Mori–Hartshorne’s theorem, we investigate the positivity of the kernel of the Frobenius trace (equivalently, the negativity of the cokernel of the Frobenius endomorphism) on a smooth projective variety over an algebraically closed field of positive characteristic. For instance, such a kernel is ample for projective spaces. Conversely, we show that for curves, surfaces, and threefolds the Frobenius trace kernel is ample only for Fano varieties of Picard rank $1$.
References
[Ach12] Frobenius push-forwards on quadrics, Commun. Algebra, Volume 40 (2012) no. 8, pp. 2732-2748 | DOI | MR | Zbl
[Ach15] A characterization of toric varieties in characteristic , Int. Math. Res. Not., Volume 2015 (2015) no. 16, pp. 6879-6892 | DOI | MR | Zbl
[Add09] Spinor sheaves and complete intersections of quadrics, Ph. D. Thesis, University of Wisconsin – Madison (2009) (https://pages.uoregon.edu/adding/theses/phd_thesis.pdf) | MR
[Add11] Spinor sheaves on singular quadrics, Proc. Am. Math. Soc., Volume 139 (2011) no. 11, pp. 3867-3879 | MR | Zbl | DOI
[BH93] Cohen–Macaulay rings, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, 1993 | MR | Zbl
[BK86] -adic etale cohomology, Publ. Math., Inst. Hautes Étud. Sci., Volume 63 (1986), pp. 107-152 | DOI | MR | Zbl | Numdam
[BK05] Frobenius splitting methods in geometry and representation theory, Progress in Mathematics, 231, Birkhäuser, 2005 | MR | Zbl | DOI
[Car57] Une nouvelle opération sur les formes différentielles, C. R. Acad. Sci. Paris, Volume 244 (1957), pp. 426-428 | MR | Zbl
[EH16] 3264 and all that. A second course in algebraic geometry, Cambridge University Press, 2016 | DOI | MR | Zbl
[ES19] A characterization of ordinary abelian varieties by the Frobenius push-forward of the structure sheaf. II, Int. Math. Res. Not., Volume 2019 (2019) no. 19, pp. 5975-5988 | DOI | MR | Zbl
[EV92] Lectures on vanishing theorems, DMV Seminar, 20, Birkhäuser, 1992 | MR | Zbl | DOI
[FS20] Del Pezzo surfaces and Mori fiber spaces in positive characteristic, Trans. Am. Math. Soc., Volume 373 (2020) no. 3, pp. 1775-1843 | DOI | MR | Zbl
[GM10] The limit as of the Hilbert–Kunz multiplicity of (2010) | arXiv | Zbl
[Har70] Ample subvarieties of algebraic varieties, Lecture Notes in Mathematics, 156, Springer, 1970 (notes written in collaboration with C. Musili) | DOI | MR | Zbl
[Har77] Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977 | MR | Zbl | DOI
[Har15] Looking out for Frobenius summands on a blown-up surface of , Ill. J. Math., Volume 59 (2015) no. 1, pp. 115-142 | MR | Zbl
[Hoc10] MATH 615 Lecture Notes, Winter, 2010, 2010 (https://dept.math.lsa.umich.edu/~hochster/615W10/615.pdf)
[Kap86] The derived category of coherent sheaves on a quadric, Funkts. Anal. Prilozh., Volume 20 (1986) no. 2, p. 67 | DOI | MR | Zbl
[Kaw21] On Kawamata–Viehweg type vanishing for three dimensional Mori fiber spaces in positive characteristic, Trans. Am. Math. Soc., Volume 374 (2021) no. 8, pp. 5697-5717 | DOI | MR | Zbl
[KM08] Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 2008 (with the collaboration of C. H. Clemens and A. Corti, translated from the 1998 Japanese original) | MR | Zbl
[Kol91] Extremal rays on smooth threefolds, Ann. Sci. Éc. Norm. Supér. (4), Volume 24 (1991) no. 3, pp. 339-361 | DOI | MR | Zbl | Numdam
[Kol96] Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 32, Springer, 1996 | DOI | MR | Zbl
[Kun69] Characterizations of regular local rings for characteristic , Am. J. Math., Volume 91 (1969), pp. 772-784 | DOI | MR | Zbl
[Lan08] -affinity and Frobenius morphism on quadrics, Int. Math. Res. Not., Volume 2008 (2008) no. 1, rnm145, 26 pages erratum ibid. 2010, no. 10, 1966-1972 (2010) | DOI | MR | Zbl
[Laz04a] Positivity in algebraic geometry. I Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 48, Springer, 2004 | Zbl | MR
[Laz04b] Positivity in algebraic geometry. II Positivity for vector bundles, and multiplier ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 49, Springer, 2004 | MR | Zbl
[Mab78] -actions and algebraic threefolds with ample tangent bundle, Nagoya Math. J., Volume 69 (1978), pp. 33-64 | DOI | MR | Zbl
[Mas18] On the Frobenius direct image of the structure sheaf of a homogeneous projective variety, J. Algebra, Volume 512 (2018), pp. 160-188 | DOI | MR | Zbl
[Mat89] Commutative ring theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, 1989 (translated from the Japanese by M. Reid) | Zbl | MR
[Meg98] Fano threefolds in positive characteristic, J. Algebr. Geom., Volume 7 (1998) no. 2, pp. 207-218 | MR | Zbl
[Mil80] Étale cohomology, Princeton Mathematical Series, 33, Princeton University Press, 1980 | MR | Zbl
[MM81] Classification of Fano -folds with , Manuscr. Math., Volume 36 (1981) no. 2, pp. 147-162 erratum ibid. 110, p. 407 (2003) | DOI | MR | Zbl
[MM83] On Fano -folds with , Algebraic varieties and analytic varieties (Tokyo, 1981) (Advanced Studies in Pure Mathematics), Volume 1, North-Holland, 1983, pp. 101-129 | DOI | MR | Zbl
[MM86] Classification of Fano -folds with . I, Algebraic and topological theories (Kinosaki, 1984), Kinokuniya Company Ltd., 1986, pp. 496-545 | MR | Zbl
[Mor79] Projective manifolds with ample tangent bundles, Ann. Math. (2), Volume 110 (1979) no. 3, pp. 593-606 | DOI | MR | Zbl
[Mor82] Threefolds whose canonical bundles are not numerically effective, Ann. Math. (2), Volume 116 (1982) no. 1, pp. 133-176 | DOI | MR | Zbl
[MS78] On Hartshorne’s conjecture, J. Math. Kyoto Univ., Volume 18 (1978) no. 3, pp. 523-533 | DOI | MR | Zbl
[MS03] Fano threefolds with wild conic bundle structures, Proc. Japan Acad., Ser. A, Volume 79 (2003) no. 6, pp. 111-114 | DOI | MR | Zbl
[Mur18] Frobenius–Seshadri constants and characterizations of projective space, Math. Res. Lett., Volume 25 (2018) no. 3, pp. 905-936 | DOI | MR | Zbl
[Mur19] Seshadri Constants and Fujita’s Conjecture via Positive Characteristic Methods, Ph. D. Thesis, University of Michigan, Ann Harbor, USA (2019) (https://www.proquest.com/docview/2273364341) | MR
[Ott88] Spinor bundles on quadrics, Trans. Am. Math. Soc., Volume 307 (1988) no. 1, pp. 301-316 | DOI | MR | Zbl
[PSZ18] -singularities in families, Algebr. Geom., Volume 5 (2018) no. 3, pp. 264-327 | DOI | MR | Zbl
[PW22] Singularities of general fibers and the LMMP, Am. J. Math., Volume 144 (2022) no. 2, pp. 505-540 | DOI | MR | Zbl
[RŠVdB19] The Frobenius morphism in invariant theory, Adv. Math., Volume 348 (2019), pp. 183-254 | MR | DOI | Zbl
[Sai03] Fano threefolds with Picard number 2 in positive characteristic, Kodai Math. J., Volume 26 (2003) no. 2, pp. 147-166 | DOI | MR | Zbl
[Sam14] The Frobenius morphism on flag varieties, I (2014) | arXiv
[Sam17] The Frobenius morphism on flag varieties, II (2017) | arXiv
[SB97] Fano threefolds in positive characteristic, Compos. Math., Volume 105 (1997) no. 3, pp. 237-265 | DOI | MR | Zbl
[Sin05] The -signature of an affine semigroup ring, J. Pure Appl. Algebra, Volume 196 (2005) no. 2-3, pp. 313-321 | DOI | MR | Zbl
[ST16] A characterization of ordinary abelian varieties by the Frobenius push-forward of the structure sheaf, Math. Ann., Volume 366 (2016) no. 3-4, pp. 1067-1087 | DOI | MR | Zbl
[Tak89] Some birational maps of Fano -folds, Compos. Math., Volume 71 (1989) no. 3, pp. 265-283 | MR | Zbl
[The21] Stacks Project, 2021 (http://stacks.math.columbia.edu)
[Tho00] Frobenius direct images of line bundles on toric varieties, J. Algebra, Volume 226 (2000) no. 2, pp. 865-874 | DOI | MR | Zbl
[Tri23] The Hilbert–Kunz density functions of quadric hypersurfaces, Adv. Math., Volume 430 (2023), 109207, 63 pages | DOI | MR | Zbl
[Tuc12] -signature exists, Invent. Math., Volume 190 (2012) no. 3, pp. 743-765 | DOI | MR | Zbl
[Tyc88] Differential basis, -basis, and smoothness in characteristic , Proc. Am. Math. Soc., Volume 103 (1988) no. 2, pp. 389-394 | DOI | MR | Zbl
[Wiś91] On contractions of extremal rays of Fano manifolds, J. Reine Angew. Math., Volume 417 (1991), pp. 141-157 | DOI | MR | Zbl