The growth of the Green function for random walks and Poincaré series
Annales Henri Lebesgue, Volume 8 (2025), pp. 1061-1107

Metadata

Keywords Branching random walks ,  relatively hyperbolic group ,  growth rate ,  Green function ,  Poincaré series ,  Growth tightness ,  Patterson–Sullivan measure ,  parabolic gap

Abstract

Given a probability measure $\mu $ on a finitely generated group $\Gamma $, the Green function $G(x,y|r)$ encodes many properties of the random walk associated with $\mu $. Endowing $\Gamma $ with a word distance, we denote by $H_r(n)$ the sum of the Green function $G(e,x|r)$ along the sphere of radius $n$. This quantity appears naturally when studying asymptotic properties of branching random walks driven by $\mu $ on $\Gamma $. Our main result exhibits a relatively hyperbolic group with convergent Poincaré series generated by $H_r(n)$.


References

[ACT15] Arzhantseva, Goulnara N.; Cashen, Christopher H.; Tao, Jing Growth tight actions, Pac. J. Math., Volume 278 (2015) no. 1, pp. 1-49 | DOI | MR | Zbl

[Ale92] Alexopoulos, Georgios K. A lower estimate for central probabilities on polycyclic groups, Can. J. Math., Volume 44 (1992) no. 5, pp. 897-910 | MR | DOI | Zbl

[Ale02] Alexopoulos, Georgios K. Random walks on discrete groups of polynomial volume growth, Ann. Probab., Volume 30 (2002) no. 2, pp. 723-801 | MR | DOI | Zbl

[AN04] Athreya, Krishna B.; Ney, Peter E. Branching processes, Dover Publications, 2004 | MR | Zbl

[Anc88] Ancona, Alano Positive harmonic functions and hyperbolicity, Potential theory-surveys and problems (Lecture Notes in Mathematics), Volume 1344, Springer, 1988, pp. 1-23 | DOI | Zbl

[BB07] Blachère, Sébastien; Brofferio, Sara Internal Diffusion Limited Aggregation on discrete groups having exponential growth, Probab. Theory Relat. Fields, Volume 137 (2007) no. 3-4, pp. 323-343 | MR | DOI | Zbl

[BHM11] Blachère, Sébastien; Haïssinsky, Peter; Mathieu, Pierre Harmonic measures versus quasiconformal measures for hyperbolic groups, Ann. Sci. Éc. Norm. Supér. (4), Volume 44 (2011), pp. 683-721 | Numdam | MR | DOI | Zbl

[Bil99] Billingsley, Patrick P. Convergence of probability measure, John Wiley & Sons, 1999 | DOI | Zbl

[Bla53] Blackwell, David Extension of a renewal theorem, Pac. J. Math., Volume 33 (1953), pp. 315-320 | MR | DOI | Zbl

[BM12] Benjamini, Itai; Müller, Sebastian On the trace of branching random walks, Groups Geom. Dyn., Volume 6 (2012) no. 2, pp. 231-247 | MR | DOI | Zbl

[Bow99] Bowditch, Brian H. Convergence groups and configuration spaces, Geometric group theory down under (Canberra, 1996), Walter de Gruyter, 1999, pp. 23-54 | MR | Zbl

[Bow12] Bowditch, Brian H. Relatively hyperbolic group, Int. J. Algebra Comput., Volume 22 (2012) no. 3, 1250016, 66 pages | MR | DOI | Zbl

[BP94] Benjamini, Itai; Peres, Yuval Markov chains indexed by trees, Ann. Probab., Volume 22 (1994) no. 1, pp. 219-243 | DOI | MR | Zbl

[CGM12] Candellero, Elisabetta; Gilch, Lorenz; Müller, Sebastian Branching Random Walks on Free Products of Groups, Proc. Lond. Math. Soc. (3), Volume 104 (2012) no. 6, pp. 1085-1120 | MR | DOI | Zbl

[CT16] Cashen, Christopher H.; Tao, Jing Growth tight actions of product groups, Groups Geom. Dyn., Volume 10 (2016) no. 2, pp. 753-770 | DOI | MR | Zbl

[DG21] Dussaule, Matthieu; Gekhtman, Ilya Stability phenomena for Martin boundaries of relatively hyperbolic groups, Probab. Theory Relat. Fields, Volume 179 (2021) no. 1-2, pp. 201-259 | DOI | Zbl | MR

[DOP00] Dal’Bo, Françoise; Otal, Jean-Pierre; Peigné, Marc Séries de Poincaré des groupes géométriquement finis, Isr. J. Math., Volume 118 (2000), pp. 109-124 | DOI | Zbl

[DPPS11] Dal’Bo, Françoise; Peigné, Marc; Picaud, Jean-Claude; Sambusetti, Andrea On the growth of quotients of Kleinian groups, Ergodic Theory Dyn. Syst., Volume 31 (2011) no. 3, pp. 835-851 | DOI | MR | Zbl

[DWY25] Dussaule, Matthieu; Wang, Longmin; Yang, Wenyuan Branching random walks on relatively hyperbolic groups, Ann. Probab., Volume 53 (2025) no. 2, pp. 391-452 | DOI | Zbl | MR

[Fel66] Feller, William An Introduction to Probability Theory and Its Applications. Vol. 2, John Wiley & Sons, 1966 | Zbl | MR

[GGPY21] Gekhtman, Ilya; Gerasimov, Victor; Potyagailo, Leonid; Yang, Wenyuan Martin boundary covers Floyd boundary, Invent. Math., Volume 223 (2021) no. 2, pp. 759-809 | DOI | Zbl | MR

[GL13] Gouëzel, Sébastien; Lalley, Steven P. Random walks on co-compact Fuchsian groups, Ann. Sci. Éc. Norm. Supér. (4), Volume 46 (2013) no. 1, pp. 131-175 | Zbl | Numdam | MR

[GM06] Gantert, Nina; Müller, Sebastian The critical Branching Markov Chain is transient, Markov Process. Relat. Fields, Volume 12 (2006) no. 4, pp. 805-814 | Zbl | MR

[Gou14] Gouëzel, Sébastien Local limit theorem for symmetric random walks in Gromov-hyperbolic groups, J. Am. Math. Soc., Volume 27 (2014) no. 3, pp. 893-928 | DOI | Zbl | MR

[GP13] Gerasimov, Victor; Potyagailo, Leonid Quasi-isometric maps and Floyd boundaries of relatively hyperbolic groups, J. Eur. Math. Soc., Volume 15 (2013) no. 6, pp. 2115-2137 | DOI | Zbl | MR

[GP15] Gerasimov, Victor; Potyagailo, Leonid Non-finitely generated relatively hyperbolic groups and Floyd quasiconvexity, Groups Geom. Dyn., Volume 9 (2015) no. 2, pp. 369-434 | DOI | Zbl | MR

[GP16] Gerasimov, Victor; Potyagailo, Leonid Quasiconvexity in relatively hyperbolic groups, J. Reine Angew. Math., Volume 710 (2016), pp. 95-135 | DOI | MR | Zbl

[Lal89] Lalley, Steven P. Renewal theorems in symbolic dynamics, with applications to geodesic flows, noneuclidean tessellations and their fractal limits, Acta Math., Volume 163 (1989) no. 1-2, pp. 1-55 | DOI | Zbl | MR

[Led93] Ledrappier, François A renewal theorem for the distance in negative curvature, Stochastic analysis (Proceedings of Symposia in Pure Mathematics), Volume 57, American Mathematical Society, 1993, pp. 351-360 | Zbl | DOI

[Led01] Ledrappier, François Some asymptotic properties of random walks in free groups, Topics in Probability and Lie Groups: Boundary Theory (CRM Proceedings & Lecture Notes), Volume 28, American Mathematical Society, 2001, pp. 117-152 | Zbl

[Pat76] Patterson, Samuel J. The limit set of a Fuchsian group, Acta Math., Volume 136 (1976) no. 3-4, pp. 241-273 | DOI | MR | Zbl

[Pei11] Peigné, Marc On some exotic Schottky groups, Discrete Contin. Dyn. Syst., Volume 31 (2011) no. 2, pp. 559-579 | DOI | MR | Zbl

[PW94] Picardello, Massimo; Woess, Wolfgang The full Martin boundary of the bi-tree, Ann. Probab., Volume 22 (1994) no. 4, pp. 2203-2222 | DOI | Zbl | MR

[Spi76] Spitzer, Frank Principles of Random Walks, Graduate Texts in Mathematics, 34, Springer, 1976 | Zbl | MR

[SWX23] Sidoravicius, Vladas; Wang, Longmin; Xiang, Kainan Limit set of branching random walks on hyperbolic groups, Commun. Pure Appl. Math., Volume 76 (2023) no. 10, pp. 2765-2803 | DOI | Zbl | MR

[Tan17] Tanaka, Ryokichi Hausdorff spectrum of harmonic measure, Ergodic Theory Dyn. Syst., Volume 37 (2017) no. 1, pp. 277-307 | DOI | MR | Zbl

[Var91] Varopoulos, Nicholas T. Groups of Superpolynomial Growth, ICM-90 Satellite Conference Proceedings (Igari, Satoru, ed.), Springer (1991), pp. 194-200 | DOI | Zbl | MR

[Woe00] Woess, Wolfgang Random Walks on Infinite Graphs and Groups, Cambridge Tracts in Mathematics, 138, Cambridge University Press, 2000 | DOI | Zbl | MR

[Yan14] Yang, Wenyuan Growth tightness for groups with contracting elements, Math. Proc. Camb. Philos. Soc., Volume 157 (2014) no. 2, pp. 297-319 | DOI | MR | Zbl

[Yan19] Yang, Wenyuan Statistically convex-cocompact actions of groups with contracting elements, Int. Math. Res. Not., Volume 23 (2019), pp. 7259-7323 | DOI | Zbl | MR

[Yan22] Yang, Wenyuan Patterson–Sullivan measures and growth of relatively hyperbolic groups, Peking Math. J., Volume 5 (2022), pp. 153-212 | DOI | Zbl | MR