Metadata
Abstract
We show that the algebraic automorphism group of the character variety of a closed orientable surface with negative Euler characteristic is a finite extension of its mapping class group. Along the way, we provide a simple characterization of the valuations on the character algebra coming from measured laminations.
References
[AS16] Rigidity phenomena in the mapping class group, Handbook of Teichmüller theory. Vol. VI (IRMA Lectures in Mathematics and Theoretical Physics), Volume 27, European Mathematical Society, 2016, pp. 131-165 | MR | Zbl
[Che13] Représentations galoisiennes automorphes et conséquences arithmétiques des conjectures de Langlands et Arthur (2013) (Mémoire de HDR https://arxiv.org/abs/1307.5170)
[CM12] Multicurves and regular functions on the representation variety of a surface in , Comment. Math. Helv., Volume 87 (2012), pp. 409-431 | DOI | MR | Zbl
[FLP79] Comment Thurston compactifie l’espace de Teichmüller, Travaux de Thurston sur les surfaces. Seminaire Orsay (Astérisque), Société Mathématique de France, 1979 no. 66-67, pp. 139-150 | Numdam | Zbl
[FM12] A primer in mapping class groups, Princeton Mathematical Series, 49, Princeton University Press, 2012 | Zbl
[Iva97] Automorphisms of complexes of curves and of Teichmüller spaces, Internat. Math. Res. Notices, Volume 14 (1997), pp. 651-666 | DOI | MR
[LM08] Ergodic theory of the space of measured laminations, Int. Math. Res. Not., Volume 2008 (2008) no. 4, rnm126 | MR | Zbl
[Luo00] Automorphisms of the complex of curves, Topology, Volume 39 (2000) no. 2, pp. 283-298 | MR | Zbl
[Mar16] Character varieties in SL and skein algebras, Topology, Geometry and Algebra of low dimensional manifolds, RIMS, Kyoto, Volume 1991, Kyoto University (2016), pp. 27-42
[Mas82] Interval exchange transformations and measured foliations, Ann. Math., Volume 115 (1982) no. 1, pp. 169-200 | DOI | MR | Zbl
[MO93] Relative growth rates of closed geodesics on a surface under varying hyperbolic structures, Comment. Math. Helv., Volume 68 (1993) no. 2, pp. 171-208 | DOI | MR | Zbl
[Ota12] Compactification of spaces of representations, after Culler, Morgan and Shalen, Berkovich Spaces and Applications (Ducros, A.; Favre, C.; Nicaise, J., eds.) (Lecture Notes in Mathematics), Volume 2119 (2012), pp. 367-413 | Zbl
[P17] The invariant theory of matrices, University Lecture Series, 69, American Mathematical Society, 2017 | MR | Zbl
[Pap86a] Deux remarques sur la géométrie symplectique de l’espace des feuilletages mesurés sur une surface, Ann. Inst. Fourier, Volume 36 (1986) no. 2, pp. 127-141 | DOI | Numdam | Zbl
[Pap86b] Geometric intersection functions and hamiltonian vector fields on the space of measured laminations, Pac. J. Math., Volume 124 (1986) no. 2, pp. 375-402 | DOI | Zbl
[PS00] On skein algebras and -character varieties, Topology, Volume 39 (2000) no. 1, pp. 115-148 | DOI | MR | Zbl
[PS19] Skein algebras of surfaces, Trans. Am. Math. Soc., Volume 371 (2019) no. 2, pp. 1309-1332 | DOI | MR | Zbl
[Sha02] Representations of 3-manifold groups, Handbook of geometric topology, North-Holland, 2002, pp. 955-1044 | Zbl
[Sko96] Splittings of surfaces, J. Am. Math. Soc., Volume 9 (1996) no. 2, pp. 605-616 | DOI | MR | Zbl
[Thu09] Geometric intersection of curves on surfaces (2009) (preprint, https://dpthurst.pages.iu.edu/DehnCoordinates.pdf)
[Vaq07] Extension d’une valuation, Trans. Am. Math. Soc., Volume 359 (2007) no. 7, pp. 3439-3481 | DOI | MR | Zbl
[ÈH74] Cubic surfaces of Markov type, Mat. Sb., N. Ser., Volume 93(135) (1974), p. 331-346, 487 | MR | Zbl