Hodge decompositions and maximal regularities for Hodge Laplacians in homogeneous function spaces on the half-space
Annales Henri Lebesgue, Volume 7 (2024), pp. 1457-1534.

Metadata

Keywords homogeneous Sobolev spaces, homogeneous Besov spaces, differential forms, Hodge decomposition, interpolation with boundary conditions, maximal regularity, evolutionary Stokes systems, half-space

Abstract

In this article, the Hodge decomposition for any degree of differential forms is investigated on the whole space n and the half-space + n on different scales of function spaces namely the homogeneous and inhomogeneous Besov and Sobolev spaces, H ˙ s,p , B ˙ p,q s , H s,p and B p,q s , for p(1,+), s(-1+1 p,1 p). The bounded holomorphic functional calculus, and other functional analytic properties, of Hodge Laplacians is also investigated in the half-space, and yields similar results for Hodge–Stokes and other related operators via the proven Hodge decomposition. As consequences, the homogeneous operator and interpolation theory revisited by Danchin, Hieber, Mucha and Tolksdorf is applied to homogeneous function spaces subject to boundary conditions and leads to various maximal regularity results with global-in-time estimates that could be of use in fluid dynamics. Moreover, the bond between the Hodge Laplacian and the Hodge decomposition will even enable us to state the Hodge decomposition for higher order Sobolev and Besov spaces with additional compatibility conditions, for regularity index s(-1+1 p,2+1 p). In order to make sense of all those properties in desired function spaces, we also give appropriate meaning of partial traces on the boundary in the appendix.

“La raison d’être” of this paper lies in the fact that the chosen realization of homogeneous function spaces is suitable for non-linear and boundary value problems, but requires a careful approach to reprove results that are already morally known.


References

[ABHN11] Arendt, W.; Batty, C. J. K.; Hieber, M.; Neubrander, F. Vector-valued Laplace transforms and Cauchy problems, Monographs in Mathematics, 96, Birkhäuser, 2011 | DOI | MR | Zbl

[ACDH04] Auscher, P.; Coulhon, T.; Duong, X. T.; Hofmann, S. Riesz transform on manifolds and heat kernel regularity, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 6, pp. 911-957 | DOI | Numdam | MR | Zbl

[AM04] Axelsson, A.; McIntosh, A. Hodge decompositions on weakly Lipschitz domains, Advances in analysis and geometry. New developments using Clifford algebras (Trends in Mathematics), Birkhäuser, 2004, pp. 3-29 | DOI | MR | Zbl

[Ama95] Amann, H. Linear and quasilinear parabolic problems, Vol. I: Abstract linear theory, Monographs in Mathematics, 89, Birkhäuser, 1995 | DOI | MR | Zbl

[BCD11] Bahouri, H.; Chemin, J.-Y.; Danchin, R. Fourier analysis and nonlinear partial differential equations, Grundlehren der Mathematischen Wissenschaften, 343, Springer, 2011 | DOI | MR | Zbl

[BL76] Bergh, J.; Löfström, J. Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, 223, Springer, 1976 | MR | Zbl

[Bog86] Bogovskiı, M. E. Decomposition of L p (Ω,R n ) into the direct sum of subspaces of solenoidal and potential vector fields, Sov. Math., Dokl., Volume 33 (1986) no. 1, pp. 161-165 | Zbl

[Che99] Chemin, J.-Y. Théorèmes d’unicité pour le système de Navier–Stokes tridimensionnel, J. Anal. Math., Volume 77 (1999) no. 1, pp. 27-50 | DOI | MR | Zbl

[CM10] Costabel, M.; McIntosh, A. On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains, Math. Z., Volume 265 (2010), pp. 297-320 | DOI | MR | Zbl

[DC94] Do Carmo, M. Differential Forms and Applications, Universitext, Springer, 1994 (original Portuguese edition published by IMPA, 1971) | DOI | MR | Zbl

[Den22] Denis, C. Existence and uniqueness in critical spaces for the magnetohydrodynamical system in n (2022) (preprint, HAL-03660738v2)

[DHMT21] Danchin, R.; Hieber, M.; Mucha, P. B.; Tolksdorf, P. Free Boundary Problems via Da Prato–Grisvard Theory (2021) | arXiv

[DHP03] Denk, R.; Hieber, M.; Prüss, J. -boundedness, Fourier multipliers, and problems of elliptic and parabolic type, Memoirs of the American Mathematical Society, 788, American Mathematical Society, 2003 | DOI | Zbl

[DK07] Denk, R.; Krainer, T. -boundedness, pseudodifferential operators, and maximal regularity for some classes of partial differential operators, Manuscr. Math., Volume 124 (2007) no. 3, pp. 319-342 | DOI | MR | Zbl

[DM09] Danchin, R.; Mucha, P. B. A critical functional framework for the inhomogeneous Navier–Stokes equations in the half-space, J. Funct. Anal., Volume 256 (2009) no. 3, pp. 881-927 | DOI | MR | Zbl

[DM15] Danchin, R.; Mucha, P. B. Critical functional framework and maximal regularity in action on systems of incompressible flows, Mémoires de la Société Mathématique de France. Nouvelle Série, 143, Société Mathématique de France, 2015 | DOI | Zbl

[DPG75] Da Prato, G.; Grisvard, P. Sommes d’opérateurs linéaires et équations différentielles opérationnelles, J. Math. Pures Appl., Volume 54 (1975) no. 3, pp. 305-387 | MR | Zbl

[DW05] Duelli, M.; Weis, L. Spectral projections, Riesz transforms and H -calculus for bisectorial operator, Nonlinear elliptic and parabolic problems. A special tribute to the work of Herbert Amann, Zürich, Switzerland, June 28–30, 2004 (Progress in Nonlinear Differential Equations and their Applications), Volume 64, Birkhäuser, 2005, pp. 99-111 | DOI | MR | Zbl

[Ege15] Egert, M. On Kato’s conjecture and mixed boundary conditions, Ph. D. Thesis, Technischen Universität Darmstadt (2015)

[FKS05] Farwig, R.; Kozono, H.; Sohr, H. An L q approach to Stokes and Navier–Stokes in general domains, Acta Math., Volume 195 (2005), pp. 21-53 | DOI | MR | Zbl

[FKS07] Farwig, R.; Kozono, H.; Sohr, H. On the Helmholtz decomposition in general unbounded domains, Arch. Math., Volume 88 (2007), pp. 239-248 | DOI | Zbl

[FMM98] Fabes, E.; Mendez, O.; Mitrea, M. Boundary layers on Sobolev–Besov spaces and Poisson’s equation for the Laplacian in Lipschitz domains, J. Funct. Anal., Volume 159 (1998) no. 2, pp. 323-368 | DOI | MR | Zbl

[FY06] Fujiwara, H.; Yamazaki, M. The Helmholtz decomposition in Sobolev and Besov spaces, Asymptotic analysis and singularities. Hyperbolic and dispersive PDEs and fluid mechanics (Advanced Studies in Pure Mathematics), Volume 47, Mathematical Society of Japan, 2006, pp. 99-116 | DOI | MR | Zbl

[Gal11] Galdi, G. P. An Introduction to the Mathematical Theory of the Navier–Stokes Equations, Springer Monographs in Mathematics, Springer, 2011 | DOI | MR | Zbl

[Gau23] Gaudin, A. Homogeneous Sobolev and Besov spaces on half-spaces, Ph. D. Thesis, Aix-Marseille Université, Marseille, France (2023) (https://hal.science/tel-04169055)

[Gau24a] Gaudin, A. Homogeneous Sobolev global-in-time maximal regularity and related trace estimates, J. Evol. Equ., Volume 24 (2024) no. 1, 15 | DOI | MR | Zbl

[Gau24b] Gaudin, A. On homogeneous Sobolev and Besov spaces on the whole and the half space, Tunis. J. Math., Volume 6 (2024) no. 2, pp. 343-404 | DOI | MR | Zbl

[GHT13] Geissert, M.; Heck, H.; Trunk, C. -calculus for a system of Laplace operators with mixed order boundary conditions, Discrete Contin. Dyn. Syst., Ser. S, Volume 6 (2013) no. 5, pp. 1259-1275 | DOI | MR | Zbl

[GS91] Giga, Y.; Sohr, H. Abstract L p estimates for the Cauchy problem with applications to the Navier–Stokes equations in exterior domains, J. Funct. Anal., Volume 102 (1991) no. 1, pp. 72-94 | DOI | MR | Zbl

[Gui91a] Guidetti, D. On elliptic problems in Besov spaces, Math. Nachr., Volume 152 (1991), pp. 247-275 | DOI | MR | Zbl

[Gui91b] Guidetti, D. On interpolation with boundary conditions, Math. Z., Volume 207 (1991) no. 3, pp. 439-460 | DOI | MR | Zbl

[Haa06] Haase, M. The functional calculus for sectorial operators, Operator Theory: Advances and Applications, 169, Birkhäuser, 2006 | DOI | MR | Zbl

[HHK06] Haak, B. H.; Haase, M.; Kunstmann, P. C. Perturbation, interpolation, and maximal regularity, Adv. Differ. Equ., Volume 11 (2006) no. 2, pp. 201-240 | DOI | MR | Zbl

[Hie20] Hieber, M. Analysis of Viscous Fluid Flows: An Approach by Evolution Equations, Mathematical Analysis of the Navier–Stokes Equations: Cetraro, Italy 2017 (Galdi, G. P.; Shibata, Y., eds.) (Lecture Notes in Mathematics), Volume 2254, Springer, 2020, pp. 1-146 | DOI | Zbl

[HM13] Hieber, M.; Monniaux, S. Well-posedness results for the Navier–Stokes equations in the rotational framework, Discrete Contin. Dyn. Syst., Volume 33 (2013) no. 11-12, pp. 5143-5151 | DOI | MR | Zbl

[HMM11] Hofmann, S.; Mitrea, M.; Monniaux, S. Riesz transforms associated with the Hodge Laplacian in Lipschitz subdomains of Riemannian manifolds, Ann. Inst. Fourier, Volume 61 (2011) no. 4, pp. 1323-1349 | DOI | Numdam | MR | Zbl

[HNPS16] Hieber, M.; Nesensohn, M.; Prüss, J.; Schade, K. Dynamics of nematic liquid crystal flows: The quasilinear approach, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 33 (2016) no. 2, pp. 397-408 | DOI | Numdam | MR | Zbl

[Jos11] Jost, J. Riemannian Geometry and Geometric Analysis, Universitext, Springer, 2011 | DOI | MR | Zbl

[KW04] Kunstmann, P. C.; Weis, L. Maximal L p -regularity for Parabolic Equations, Fourier Multiplier Theorems and H -functional Calculus, Functional Analytic Methods for Evolution Equations (Lecture Notes in Mathematics), Volume 1855, Springer, 2004, pp. 65-311 | DOI | Zbl

[Lun18] Lunardi, A. Interpolation theory, Appunti. Scuola Normale Superiore di Pisa (Nuova Serie), Edizioni della Normale, 2018 | DOI | MR | Zbl

[McI86] McIntosh, A. Operators which have an H functional calculus, Miniconference on operator theory and partial differential equations (North Ryde, 1986) (Proceedings of the Centre for Mathematical Analysis, Australian National University), Volume 14, Australian National University, Canberra, 1986, pp. 210-231 | MR | Zbl

[MM08] Mitrea, M.; Monniaux, S. The regularity of the Stokes operator and the Fujita–Kato approach to the Navier–Stokes initial value problem in Lipschitz domains, J. Funct. Anal., Volume 254 (2008) no. 6, pp. 1522-1574 | DOI | MR | Zbl

[MM09a] Mitrea, M.; Monniaux, S. The nonlinear Hodge–Navier–Stokes equations in Lipschitz domains, Differ. Integral Equ., Volume 22 (2009) no. 3-4, pp. 339-356 | MR | Zbl

[MM09b] Mitrea, M.; Monniaux, S. On the analyticity of the semigroup generated by the Stokes operator with Neumann-type boundary conditions on Lipschitz subdomains of Riemannian manifolds, Trans. Am. Math. Soc., Volume 361 (2009) no. 6, pp. 3125-3157 | DOI | MR | Zbl

[MM18] McIntosh, A.; Monniaux, S. Hodge–Dirac, Hodge–Laplacian and Hodge–Stokes operators in L p spaces on Lipschitz domains, Rev. Mat. Iberoam., Volume 34 (2018) no. 4, pp. 1711-1753 | DOI | MR | Zbl

[MMS08] Mitrea, D.; Mitrea, M.; Shaw, M.-C. Traces of Differential Forms on Lipschitz Domains, the Boundary De Rham Complex, and Hodge Decompositions, Indiana Univ. Math. J., Volume 57 (2008) no. 5, pp. 2061-2095 | DOI | MR | Zbl

[Mon13] Monniaux, S. Various boundary conditions for Navier–Stokes equations in bounded Lipschitz domains, Discrete Contin. Dyn. Syst., Ser. S, Volume 6 (2013) no. 5, pp. 1355-1369 | DOI | MR | Zbl

[Mon21] Monniaux, S. Existence in critical spaces for the magnetohydrodynamical system in 3D bounded Lipschitz domains, J. Elliptic Parabol. Equ., Volume 7 (2021), pp. 311-322 | DOI | MR | Zbl

[MS18] Monniaux, S.; Shen, Z. Stokes problems in irregular domains with various boundary conditions, Handbook of mathematical analysis in mechanics of viscous fluids (Giga, Y.; Novotný, A., eds.), Springer, 2018, pp. 207-248 | DOI | MR

[OS16] Ogawa, T.; Shimizu, S. End-point maximal L 1 -regularity for the Cauchy problem to a parabolic equation with variable coefficients, Math. Ann., Volume 365 (2016) no. 1-2, pp. 661-705 | DOI | MR | Zbl

[OS21] Ogawa, T.; Shimizu, S. Global well-posedness for the incompressible Navier–Stokes equations in the critical Besov space under the Lagrangian coordinates, J. Differ. Equations, Volume 274 (2021), pp. 613-651 | DOI | MR | Zbl

[OS22] Ogawa, T.; Shimizu, S. Maximal L 1 -regularity for parabolic initial-boundary value problems with inhomogeneous data, J. Evol. Equ., Volume 22 (2022) no. 2, 30 | DOI | MR | Zbl

[Ouh05] Ouhabaz, E. M. Analysis of heat equations on domains, London Mathematical Society Monographs, 31, Princeton University Press, 2005 | MR | Zbl

[Sch95] Schwarz, G. Hodge Decomposition A Method for Solving Boundary Value Problems, Lecture Notes in Mathematics, Springer, 1995 | DOI | MR | Zbl

[Soh01] Sohr, H. The Navier–Stokes Equations: An Elementary Functional Analytic Approach, Birkhäuser Advanced Texts. Basler Lehrbücher, Birkhäuser, 2001 | DOI | Zbl

[SS92] Simader, C. G.; Sohr, H. A new approach to the Helmholtz decomposition and the Neumann problem in L q -spaces for bounded and exterior domains, Mathematical Problems Relating to the Navier–Stokes Equations (Galdi, G. P., ed.) (Series on Advances in Mathematics for Applied Sciences), Volume 11, World Scientific, 1992, pp. 1-35 | DOI | Zbl

[Ste70] Stein, E. M. Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, 30, Princeton University Press, 1970 | MR | Zbl

[Tol17] Tolksdorf, P. On the L p -theory of the Navier-Stokes equation on Lipschitz domains, Ph. D. Thesis, Technische Universität Darmstadt (2017) | Zbl

[Tol18] Tolksdorf, P. On the L p -theory of the Navier–Stokes equations on three-dimensional bounded Lipschitz domains, Math. Ann., Volume 371 (2018) no. 1-2, pp. 445-460 | DOI | MR | Zbl

[Tri78] Triebel, H. Interpolation Theory, Function Spaces, Differential Operators, North-Holland Mathematical Library, 18, Elsevier, 1978 | MR | Zbl

[Tri83] Triebel, H. Theory of Function Spaces. I, Monographs in Mathematics, 78, Birkhäuser, 1983 | DOI | Zbl

[TW20] Tolksdorf, P.; Watanabe, K. The Navier–Stokes equations in exterior Lipschitz domains: L p -theory, J. Differ. Equations, Volume 269 (2020) no. 7, pp. 5765-5801 | DOI | MR | Zbl

[Wei01] Weis, L. Operator–Valued Multiplier Theorems and Maximal L p –Regularity, Math. Ann., Volume 319 (2001) no. 4, pp. 735-758 | DOI | Zbl