Hydrodynamic limits for kinetic equations preserving mass, momentum and energy: a spectral and unified approach in the presence of a spectral gap
Annales Henri Lebesgue, Volume 7 (2024), pp. 969-1098.

Metadata

Keywords Kinetic equations, hydrodynamic limit, incompressible Navier–Stokes–Fourier system

Abstract

Triggered by the fact that, in the hydrodynamic limit, several different kinetic equations of physical interest all lead to the same Navier–Stokes–Fourier system, we develop in the paper an abstract framework which allows to explain this phenomenon. The method we develop can be seen as a significant improvement of known approaches for which we fully exploit some structural assumptions on the linear and nonlinear collision operators as well as a good knowledge of the Cauchy theory for the limiting equation. In particular, we fully exploit the fact that the collision operator is preserving both momentum and kinetic energy. We adopt a perturbative framework in a Hilbert space setting and first develop a general and fine spectral analysis of the linearized operator and its associated semigroup. Then, we introduce a splitting adapted to the various regimes (kinetic, acoustic, hydrodynamic) present in the kinetic equation which allows, by a fixed point argument, to construct a solution to the kinetic equation and prove the convergence towards suitable solutions to the Navier–Stokes–Fourier system. Our approach is robust enough to treat, in the same formalism, the case of the Boltzmann equation with hard and moderately soft potentials, with and without cut-off assumptions, as well as the Landau equation for hard and moderately soft potentials in presence of a spectral gap. New well-posedness and strong convergence results are obtained within this framework. In particular, for initial data with algebraic decay with respect to the velocity variable, our approach provides the first result concerning the strong Navier–Stokes limit from Boltzmann equation without Grad cut-off assumption or Landau equation. The method developed in the paper is also robust enough to apply, at least at the linear level, to quantum kinetic equations for Fermi–Dirac or Bose–Einstein particles.


References

[ABC22] Albritton, Dallas; Brué, Elia; Colombo, Maria Non-uniqueness of Leray solutions of the forced Navier–Stokes equations, Ann. Math., Volume 196 (2022), pp. 415-455 | DOI | Zbl

[ABL21] Alonso, Ricardo; Bagland, Véronique; Lods, Bertrand Long time dynamics for the Landau–Fermi–Dirac equation with hard potentials, J. Differ. Equations, Volume 270 (2021), pp. 596-663 | DOI | Zbl

[AHL19] Alexandre, Radjesvarane; Hérau, Frédéric; Li, Wei-Xi Global hypoelliptic and symbolic estimates for the linearized Boltzmann operator without angular cutoff, J. Math. Pures Appl., Volume 126 (2019), pp. 1-71 | DOI | Zbl

[AMSY21] Alonso, Ricardo; Morimoto, Yoshinori; Sun, Weiran; Yang, Tong Non-cutoff Boltzmann equation with polynomial decay perturbations, Rev. Mat. Iberoam., Volume 37 (2021), pp. 189-292 | DOI | Zbl

[AMU + 11] Alexandre, Radjesvarane; Morimoto, Yoshinori; Ukai, Seiji; Xu, Chao-Jiang; Yang, Tong Global existence and full regularity of the Boltzmann equation without angular cutoff, Commun. Math. Phys., Volume 304 (2011), pp. 513-581 | DOI | Zbl

[AN15] Arkeryd, Leif; Nouri, Anne Well posedness of the Cauchy problem for a space dependent anyon Boltzmann equation, SIAM J. Math. Anal., Volume 47 (2015), pp. 4720-4742 | DOI | Zbl

[ASR19] Arsénio, Diogo; Saint-Raymond, Laure From the Vlasov–Maxwell–Boltzmann system to incompressible viscous electro-magneto-hydrodynamics. Volume 1, EMS Monographs in Mathematics, 1, European Mathematical Society, 2019 | DOI | Zbl

[BCD11] Bahouri, Hajer; Chemin, Jean-Yves; Danchin, Raphaël Fourier analysis and nonlinear partial differential equations, Grundlehren der Mathematischen Wissenschaften, 343, Springer, 2011 | DOI | Zbl

[BGL91] Bardos, Claude; Golse, François; Levermore, C. David Fluid dynamic limits of kinetic equations. I. Formal derivations, J. Stat. Phys., Volume 63 (1991), pp. 323-344 | DOI

[BGL93] Bardos, Claude; Golse, François; Levermore, C. David Fluid dynamic limits of kinetic equations. II. Convergence proofs for the Boltzmann equation, Commun. Pure Appl. Math., Volume 46 (1993), pp. 667-753 | DOI | Zbl

[BLP79] Bensoussan, Alain; Lions, Jacques L.; Papanicolaou, George C. Boundary layers and homogenization of transport processes, Publ. Res. Inst. Math. Sci., Ser. A, Volume 15 (1979), pp. 53-157 | DOI | Zbl

[BM05] Baranger, Céline; Mouhot, Clément Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials, Rev. Mat. Iberoam., Volume 21 (2005), pp. 819-841 | DOI | Zbl

[BM22] Bouin, Émeric; Mouhot, Clément Quantitative fluid approximation in transport theory: a unified approach, Probab. Math. Phys., Volume 3 (2022), pp. 491-542 | DOI | Zbl

[BMAM19] Briant, Marc; Merino-Aceituno, Sara; Mouhot, Clément From Boltzmann to incompressible Navier–Stokes in Sobolev spaces with polynomial weight, Anal. Appl., Singap., Volume 17 (2019), pp. 85-116 | DOI | Zbl

[Bri15] Briant, Marc From the Boltzmann equation to the incompressible Navier–Stokes equations on the torus: a quantitative error estimate, J. Differ. Equations, Volume 259 (2015), pp. 6072-6141 | DOI | Zbl

[BSS84] Bardos, Claude; Santos, Rafael F.; Sentis, Remi Diffusion approximation and computation of the critical size, Trans. Am. Math. Soc., Volume 284 (1984), pp. 617-649 | DOI | Zbl

[BU91] Bardos, Claude; Ukai, Seiji The classical incompressible Navier–Stokes limit of the Boltzmann equation, Math. Models Methods Appl. Sci., Volume 1 (1991), pp. 235-257 | DOI | Zbl

[Caf80] Caflisch, Russel E. The fluid dynamic limit of the nonlinear Boltzmann equation, Commun. Pure Appl. Math., Volume 33 (1980), pp. 651-666 | DOI | Zbl

[CC23] Cao, Chuqi; Carrapatoso, Kleber Hydrodynamic limit for the non-cutoff Boltzmann equation (2023) | arXiv

[CDL22] Cao, Chuqi; Deng, Dingqun; Li, Xingyu The Vlasov–Poisson–Boltzmann/Landau systems with polynomial perturbation near Maxwellian (2022) | arXiv

[Cer88] Cercignani, Carlo The Boltzmann equation and its applications, Applied Mathematical Sciences, 67, Springer, 1988 | DOI | Zbl

[CFF19] Crevat, Joachim; Faye, Grégory; Filbet, Francis Rigorous derivation of the nonlocal reaction-diffusion Fitzhugh–Nagumo system, SIAM J. Math. Anal., Volume 51 (2019), pp. 346-373 | DOI | Zbl

[CG24] Carrapatoso, Kleber; Gervais, Pierre Non-cutoff Boltzmann equation with soft potentials in the whole space, Pure Appl. Anal., Volume 6 (2024), pp. 253-303 | DOI | Zbl

[CM17] Carrapatoso, Kleber; Mischler, Stéphane Landau equation for very soft and Coulomb potentials near Maxwellians, Ann. PDE, Volume 3 (2017), 1, 65 pages | DOI | Zbl

[CTW16] Carrapatoso, Kleber; Tristani, Isabelle; Wu, Kung-Chien Cauchy problem and exponential stability for the inhomogeneous Landau equation, Arch. Ration. Mech. Anal., Volume 221 (2016), pp. 363-418 | DOI | Zbl

[DLS12] De Lellis, Camillo; Székelyhidi, László jun. The h-principle and the equations of fluid dynamics, Bull. Am. Math. Soc., Volume 49 (2012), pp. 347-375 | DOI | Zbl

[DMEL89] De Masi, Anna; Esposito, Raffaele; Lebowitz, Joel L. Incompressible Navier–Stokes and Euler limits of the Boltzmann equation, Commun. Pure Appl. Math., Volume 42 (1989), pp. 1189-1214 | DOI | Zbl

[Dol94] Dolbeault, Jean Kinetic models and quantum effects: A modified Boltzmann equation for Fermi–Dirac particles, Arch. Ration. Mech. Anal., Volume 127 (1994), pp. 101-131 | DOI | Zbl

[DP23] Dechicha, Dechida; Puel, Marjolaine Fractional diffusion for Fokker–Planck equation with heavy tail equilibrium: an à la Koch spectral method in any dimension (2023) | arXiv

[Dua11] Duan, Renjun Hypocoercivity of linear degenerately dissipative kinetic equations, Nonlinearity, Volume 24 (2011) no. 8, pp. 2165-2189 | DOI | Zbl

[EN00] Engel, Klaus-Jochen; Nagel, Rainer One–parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, 194, Springer, 2000 | DOI | Zbl

[Ens17] Enskog, David Kinetische Theorie der Vorgänge, Almqvist & Wiksell, Uppsala, 1917 (translated in Kinetic Theory, S.G. Brush, Ed., Pergamon Press, Oxford, 1972, 125–225) | Zbl

[EP75] Ellis, Richard S.; Pinsky, Mark A. The first and second fluid approximations to the linearized Boltzmann equation, J. Math. Pures Appl., Volume 54 (1975), pp. 125-156 | Zbl

[FK19] Figalli, Alessio; Kang, Moon-Jin A rigorous derivation from the kinetic Cucker–Smale model to the pressureless Euler system with nonlocal alignment, Anal. PDE, Volume 12 (2019), pp. 843-866 | DOI | Zbl

[Ger21] Gervais, Pierre Spectral study of the linearized Boltzmann operator in L 2 spaces with polynomial and gaussian weights, Kinet. Relat. Models, Volume 14 (2021), pp. 725-747 | DOI | Zbl

[Ger23] Gervais, Pierre On the convergence from Boltzmann to Navier–Stokes–Fourier for general initial data, SIAM J. Math. Anal., Volume 55 (2023), pp. 805-848 | DOI | Zbl

[GJJ10] Guo, Yan; Jang, Juhi; Jiang, Ning Acoustic limit for the Boltzmann equation in optimal scaling, Commun. Pure Appl. Math., Volume 63 (2010), pp. 337-361 | DOI | Zbl

[GJV04a] Goudon, Thierry; Jabin, Pierre-Emmanuel; Vasseur, Alexis Hydrodynamic limit for the Vlasov–Navier–Stokes equations. I. Light particles regime, Indiana Univ. Math. J., Volume 53 (2004), pp. 1495-1515 | DOI | Zbl

[GJV04b] Goudon, Thierry; Jabin, Pierre-Emmanuel; Vasseur, Alexis Hydrodynamic limit for the Vlasov–Navier–Stokes equations. II. Fine particles regime, Indiana Univ. Math. J., Volume 53 (2004), pp. 1517-1536 | DOI | Zbl

[GL] Gervais, Pierre; Lods, Bertrand Strong convergence from Boltzmann–Fermi–Dirac equation to Navier–Stokes–Fourier system (work in preparation)

[GMM17] Gualdani, Maria P.; Mischler, Stéphane; Mouhot, Clément Factorization for non-symmetric operators and exponential H-theorem, Mémoires de la Société Mathématique de France. Nouvelle Série, 153, Société Mathématique de France, 2017 | Zbl

[Gol14] Golse, François Fluid dynamic limits of the kinetic theory of gases, From particle systems to partial differential equations (Springer Monographs in Mathematics), Volume 75, Springer, 2014, pp. 3-91 | DOI | Zbl

[Gra63] Grad, Harold Asymptotic theory of the Boltzmann equation, Phys. Fluids, Volume 6 (1963), pp. 147-181 | DOI | Zbl

[GS11] Gressman, Philip T.; Strain, Robert M. Global classical solutions of the Boltzmann equation without angular cut-off, J. Am. Math. Soc., Volume 24 (2011), pp. 771-847 | DOI | Zbl

[GSR04] Golse, François; Saint-Raymond, Laure The Navier–Stokes limit of the Boltzmann equation for bounded collision kernels, Invent. Math., Volume 155 (2004), pp. 81-161 | DOI | Zbl

[GSR09] Golse, François; Saint-Raymond, Laure The incompressible Navier–Stokes limit of the Boltzmann equation for hard cutoff potentials, J. Math. Pures Appl., Volume 91 (2009), pp. 508-552 | DOI | Zbl

[GT20] Gallagher, Isabelle; Tristani, Isabelle On the convergence of smooth solutions from Boltzmann to Navier–Stokes, Ann. Henri Lebesgue, Volume 3 (2020), pp. 561-614 | DOI | Numdam | Zbl

[Guo02] Guo, Yan The Landau equation in a periodic box, Commun. Math. Phys., Volume 231 (2002), pp. 391-434 | DOI | Zbl

[Guo04] Guo, Yan The Boltzmann equation in the whole space, Indiana Univ. Math. J., Volume 53 (2004), pp. 1081-1094 | DOI | Zbl

[Guo06] Guo, Yan Boltzmann diffusive limit beyond the Navier–Stokes approximation, Commun. Pure Appl. Math., Volume 59 (2006), pp. 626-687 | DOI | Zbl

[Guo16] Guo, Yan L 6 bound for Boltzmann diffusive limit, Ann. Appl. Math., Volume 32 (2016), pp. 249-265 | Zbl

[GW17] Guo, Yan; Wu, Lei Geometric correction in diffusive limit of neutron transport equation in 2D convex domains, Arch. Ration. Mech. Anal., Volume 226 (2017), pp. 321-403 | DOI | Zbl

[Hil12] Hilbert, David Begründung der kinetischen Gastheorie, Math. Ann., Volume 72 (1912), pp. 562-577 | DOI | Zbl

[HKM23] Han-Kwan, Daniel; Michel, David On hydrodynamic limits of the Vlasov–Navier–Stokes system (2023)

[HTT20] Hérau, Frédéric; Tonon, Daniela; Tristani, Isabelle Regularization estimates and Cauchy theory for inhomogeneous Boltzmann equation for hard potentials without cut-off, Commun. Math. Phys., Volume 377 (2020), pp. 697-771 | DOI | Zbl

[JM17] Jiang, Ning; Masmoudi, Nader Boundary layers and incompressible Navier–Stokes–Fourier limit of the Boltzmann equation in bounded domain I, Commun. Pure Appl. Math., Volume 70 (2017), pp. 90-171 | DOI | Zbl

[JXZ18] Jiang, Ning; Xu, Chao-Jiang; Zhao, Huijiang Incompressible Navier–Stokes–Fourier limit from the Boltzmann equation: classical solutions, Indiana Univ. Math. J., Volume 67 (2018), pp. 1817-1855 | DOI | Zbl

[JXZ22] Jiang, Ning; Xiong, Linjie; Zhou, Kai The incompressible Navier–Stokes–Fourier limit from Boltzmann–Fermi–Dirac equation, J. Differ. Equations, Volume 308 (2022), pp. 77-129 | DOI | Zbl

[Kat66] Kato, Tosio Perturbation theory for linear operators, Grundlehren der Mathematischen Wissenschaften, 132, Springer, 1966 | Zbl

[KC22] K. Carrapatoso, I. Tristani M. Rachid Regularization estimates and hydrodynamical limit for the Landau equation, J. Math. Pures Appl., Volume 163 (2022), pp. 334-432 | DOI | Zbl

[KMT15] Karper, Trygve K.; Mellet, Antoine; Trivisa, Konstantina Hydrodynamic limit of the kinetic Cucker–Smale flocking model, Math. Models Methods Appl. Sci., Volume 25 (2015), pp. 131-163 | DOI | Zbl

[LM01a] Lions, Pierre-Louis; Masmoudi, Nader Boltzmann equation to the Navier–Stokes and Euler equations I, Arch. Ration. Mech. Anal., Volume 158 (2001), pp. 173-193 | DOI | Zbl

[LM01b] Lions, Pierre-Louis; Masmoudi, Nader From Boltzmann equation to the Navier–Stokes and Euler equations II, Arch. Ration. Mech. Anal., Volume 158 (2001), pp. 195-211 | DOI | Zbl

[LM10] Levermore, C. David; Masmoudi, Nader From the Boltzmann equation to an incompressible Navier–Stokes–Fourier system, Arch. Ration. Mech. Anal., Volume 196 (2010), pp. 753-809 | DOI | Zbl

[LR16] Lemarié-Rieusset, Pierre Gilles The Navier–Stokes problem in the 21st century, CRC Press, 2016 | DOI | Zbl

[LY16] Luo, Lan; Yu, Hongjun Spectrum analysis of the linearized relativistic Landau equation, J. Stat. Phys., Volume 163 (2016), pp. 914-935 | DOI | Zbl

[LY17] Luo, Lan; Yu, Hongjun Spectrum analysis of the linear Fokker–Planck equation, Anal. Appl., Singap., Volume 15 (2017), pp. 313-331 | DOI | Zbl

[MMM11] Mellet, Antoine; Mischler, Stéphane; Mouhot, Clément Fractional diffusion limit for collisional kinetic equations, Arch. Ration. Mech. Anal., Volume 199 (2011), pp. 493-525 | DOI | Zbl

[Nis78] Nishida, Takaaki Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation, Commun. Math. Phys., Volume 61 (1978), pp. 119-148 | DOI | Zbl

[Rac21] Rachid, Mohamad Incompressible Navier–Stokes–Fourier limit from the Landau equation, Kinet. Relat. Models, Volume 14 (2021), pp. 599-638 | DOI | Zbl

[Son02] Sone, Yoshio Kinetic theory and fluid dynamics, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser, 2002 | DOI | Zbl

[SR09] Saint-Raymond, Laure Hydrodynamic limits of the Boltzmann equation, Lecture Notes in Mathematics, 1971, Springer, 2009 | DOI | Zbl

[Tri16] Tristani, Isabelle Boltzmann equation for granular media with thermal force in a weakly inhomogeneous setting, J. Funct. Anal., Volume 270 (2016), pp. 1922-1970 | DOI | Zbl

[Uka74] Ukai, Seiji On the existence of global solutions of a mixed problem for nonlinear Boltzman equation, Proc. Japan Acad., Volume 50 (1974), pp. 179-184 | DOI | Zbl

[Vil02] Villani, Cédric A review of mathematical topics in collisional kinetic theory, Handbook of mathematical fluid dynamics. Vol. I., North-Holland, 2002, pp. 71-305 | Zbl

[YY16] Yang, Tong; Yu, Hongjun Spectrum analysis of some kinetic equations, Arch. Ration. Mech. Anal., Volume 222 (2016), pp. 731-768 | DOI | Zbl

[YY23] Yang, Tong; Yu, Hongjun Spectrum structure and decay rate estimates on the Landau equation with Coulomb potential, Sci. China, Math., Volume 66 (2023), pp. 37-78 | DOI | Zbl

[YZ24] Yang, Tong; Zhou, Yu-Long An explicit coercivity estimate of the linearized quantum Boltzmann operator without angular cutoff, J. Funct. Anal., Volume 286 (2024), 110197 | DOI | Zbl

[Zho22] Zhou, Yu-Long Global well-posedness of the quantum Boltzmann equation for bosons interacting via inverse power law potentials (2022) (https://arxiv.org/abs/2210.08428)