A semigroup approach to the reconstruction theorem and the multilevel Schauder estimate
Annales Henri Lebesgue, Volume 8 (2025), pp. 151-180.

Metadata

Keywords Regularity structures, reconstruction theorem, multilevel Schauder estimate

Abstract

The reconstruction theorem and the multilevel Schauder estimate have central roles in the analytic theory of regularity structures by Hairer (2014). Inspired by Otto and Weber’s work (2019), we provide elementary proofs for them by using the semigroup of operators. Essentially, we use only the semigroup property and the upper estimates of kernels. Moreover, we refine the several types of Besov reconstruction theorems considered by Hairer–Labbé (2017) and Broux–Lee (2022) and introduce the new framework of “regularity-integrability structures”. The analytic theorems in this paper are applied to the study of quasilinear SPDEs by Bailleul–Hoshino–Kusuoka (2022+) and an inductive proof of the convergence of random models by Bailleul–Hoshino (2023+).


References

[BB16] Bailleul, Ismaël F.; Bernicot, Frédéric Heat semigroup and singular PDEs, J. Funct. Anal., Volume 270 (2016) no. 9, pp. 3344-3452 | DOI | MR | Zbl

[BCD11] Bahouri, Hajer; Chemin, Jean-Yves; Danchin, Raphaël Fourier analysis and nonlinear partial differential equations, Grundlehren der Mathematischen Wissenschaften, 343, Springer, 2011 | DOI | MR | Zbl

[BCZ24] Broux, Lucas; Caravenna, Francesco; Zambotti, Lorenzo Hairer’s multilevel Schauder estimates without Regularity Structures, Trans. Am. Math. Soc., Volume 377 (2024) no. 10, pp. 6981-7035 | DOI | MR | Zbl

[BDY12] Bui, Huy-Qui; Duong, Xuan Thinh; Yan, Lixin Calderón reproducing formulas and new Besov spaces associated with operators, Adv. Math., Volume 229 (2012) no. 4, pp. 2449-2502 | DOI | MR | Zbl

[BH24] Bailleul, Ismaël F.; Hoshino, Masato Random models on regularity-integrability structures (2024) (https://arxiv.org/abs/2310.10202)

[BH25] Bailleul, Ismaël F.; Hoshino, Masato A tourist’s guide to regularity structures and singular stochastic PDEs, EMS Surv. Math. Sci. (2025) (online first) | DOI

[BHK24] Bailleul, Ismaël F.; Hoshino, Masato; Kusuoka, Seiichiro Regularity structures for quasilinear singular SPDEs, Arch. Ration. Mech. Anal., Volume 248 (2024) no. 6, 127 | DOI | MR | Zbl

[BL23] Broux, Lucas; Lee, David Besov reconstruction, Potential Anal., Volume 59 (2023) no. 4, pp. 1875-1912 | DOI | MR | Zbl

[CHS18] Chandra, Ajay; Hairer, Martin; Shen, Hao The dynamical sine-Gordon model in the full subcritical regime (2018) (https://arxiv.org/abs/1808.02594)

[CMW23] Chandra, Ajay; Moinat, Augustin; Weber, Hendrik A priori bounds for the Φ 4 equation in the full sub-critical regime, Arch. Ration. Mech. Anal., Volume 247 (2023) no. 3, 48 | DOI | MR | Zbl

[CZ20] Caravenna, Francesco; Zambotti, Lorenzo Hairer’s reconstruction theorem without regularity structures, EMS Surv. Math. Sci., Volume 7 (2020) no. 2, pp. 207-251 | DOI | MR | Zbl

[DDD19] Dahlqvist, Antoine; Diehl, Joscha; Driver, Bruce K. The parabolic Anderson model on Riemann surfaces, Probab. Theory Relat. Fields, Volume 174 (2019) no. 1-2, pp. 369-444 | DOI | MR | Zbl

[FH20] Friz, Peter K.; Hairer, Martin A course on rough paths. With an introduction to regularity structures, Universitext, Springer, 2020 | DOI | Zbl

[GIP15] Gubinelli, Massimiliano; Imkeller, Peter; Perkowski, Nicolas Paracontrolled distributions and singular PDEs, Forum Math. Pi, Volume 3 (2015), 6, 75 pages | DOI | MR | Zbl

[GL15] Grigor’yan, Alexander; Liu, Liguang Heat kernel and Lipschitz–Besov spaces, Forum Math., Volume 27 (2015) no. 6, pp. 3567-3613 | DOI | Zbl

[Hai13] Hairer, Martin Solving the KPZ equation, Ann. Math. (2), Volume 178 (2013) no. 2, pp. 559-664 | DOI | MR | Zbl

[Hai14] Hairer, Martin A theory of regularity structures, Invent. Math., Volume 198 (2014) no. 2, pp. 269-504 | DOI | MR | Zbl

[HL17] Hairer, Martin; Labbé, Cyril The reconstruction theorem in Besov spaces, J. Funct. Anal., Volume 273 (2017) no. 8, pp. 2578-2618 | DOI | MR | Zbl

[HQ18] Hairer, Martin; Quastel, Jeremy A class of growth models rescaling to KPZ, Forum Math. Pi, Volume 6 (2018), 3, 112 pages | DOI | MR | Zbl

[HR20] Hensel, Sebastian; Rosati, Tommaso Modelled distributions of Triebel–Lizorkin type, Stud. Math., Volume 252 (2020) no. 3, pp. 251-297 | DOI | MR | Zbl

[HS16] Hairer, Martin; Shen, Hao The dynamical sine-Gordon model, Commun. Math. Phys., Volume 341 (2016) no. 3, pp. 933-989 | DOI | MR | Zbl

[HS23] Hairer, Martin; Singh, Harprit Regularity Structures on Manifolds and Vector Bundles (2023) (https://arxiv.org/abs/2308.05049)

[HX18] Hairer, Martin; Xu, Weijun Large-scale behavior of three-dimensional continuous phase coexistence models, Pure Appl. Math., Volume 71 (2018) no. 4, pp. 688-746 | DOI | MR | Zbl

[LPT21] Liu, Chong; Prömel, David J.; Teichmann, Josef Stochastic analysis with modelled distributions, Stoch. Partial Differ. Equ., Anal. Comput., Volume 9 (2021) no. 2, pp. 343-379 | DOI | MR | Zbl

[MW17] Mourrat, Jean-Christophe; Weber, Hendrik Global well-posedness of the dynamic Φ 4 model in the plane, Ann. Probab., Volume 45 (2017) no. 4, pp. 2398-2476 | DOI | MR | Zbl

[OW19] Otto, Felix; Weber, Hendrik Quasilinear SPDEs via Rough Paths, Arch. Ration. Mech. Anal., Volume 232 (2019) no. 2, pp. 873-950 | DOI | MR | Zbl

[RS21] Rinaldi, Paolo; Sclavi, Federico Reconstruction theorem for germs of distributions on smooth manifolds, J. Math. Anal. Appl., Volume 501 (2021) no. 2, 125215, 14 pages | DOI | MR | Zbl

[ST18] Singh, Harprit; Teichmann, Josef An elementary proof of the reconstruction theorem (2018) (https://arxiv.org/abs/1812.03082)

[Tri92] Triebel, Hans Theory of function spaces II, Monographs in Mathematics, 84, Birkhäuser, 1992 | DOI | MR | Zbl

[ZK23] Zorin-Kranich, Pavel The reconstruction theorem in quasinormed spaces, Rev. Mat. Iberoam., Volume 39 (2023) no. 4, pp. 1233-1246 | DOI | MR | Zbl