Metadata
Abstract
Let $S$ be a closed surface of genus $g\ge 2$, furnished with a Borel probability measure $\lambda $ with total support. We show that if $f$ is a $\lambda $-preserving homeomorphism isotopic to the identity such that the rotation vector $\operatorname{rot}_f(\lambda )\in H_1(S,\mathbb{R})$ is a multiple of an element of $H_1(S,\mathbb{Z})$, then $f$ has infinitely many periodic orbits.
Moreover, these periodic orbits can be supposed to have their rotation vectors arbitrarily close to the rotation vector of any fixed ergodic Borel probability measure.
References
[Atk76] Recurrence of co-cycles and random walks, J. Lond. Math. Soc. (2), Volume 13 (1976), pp. 486-488 | DOI | MR | Zbl
[AZ03] On properties of the vertical rotation interval for twist mappings. II, Qual. Theory Dyn. Syst., Volume 4 (2003) no. 2, pp. 125-137 | DOI | MR | Zbl
[BCLR20] Fixed point sets of isotopies on surfaces, J. Eur. Math. Soc., Volume 22 (2020) no. 6, pp. 1971-2046 | DOI | MR | Zbl
[Bro12] Beweis des ebenen Translationssatzes, Math. Ann., Volume 72 (1912), pp. 37-54 | DOI | MR | Zbl
[Cal05] Publ. Math. Inst. Hautes Études Sci, Publ. Math., Volume 102 (2005), pp. 1-98 | DOI | Zbl
[Cal06] Periodic orbits of Hamiltonian homeomorphisms of surfaces, Duke Math. J., Volume 133 (2006) no. 1, pp. 125-184 | DOI | MR | Zbl
[Cal22] Conservative surface homeomorphisms with finitely many periodic points, J. Fixed Point Theory Appl., Volume 24 (2022) no. 2, 20, 36 pages | DOI | MR | Zbl
[CGPPZ] A note on the existence of U-cyclic elements in periodic Floer homology (https://arxiv.org/abs/2110.13844v2, to appear in open access in Periodic Floer homology, Proceedings of the American Mathematical Society. Series B) | Zbl
[CGPZ22] Periodic Floer homology and the smooth closing lemma for area-preserving surface diffeomorphisms (2022) | arXiv | Zbl
[CS22] Homoclinic orbits for area preserving diffeomorphisms of surfaces, Ergodic Theory Dyn. Syst., Volume 42 (2022) no. 3, pp. 1122-1165 | DOI | MR | Zbl
[CT18] Forcing theory for transverse trajectories of surface homeomorphisms, Invent. Math., Volume 212 (2018) no. 2, pp. 619-729 | DOI | MR | Zbl
[CT22] Topological horseshoes for surface homeomorphisms, Duke Math. J., Volume 171 (2022) no. 12, pp. 2519-2626 | DOI | MR | Zbl
[Doe97] Rotation measures for homeomorphisms of the torus homotopic to a Dehn twist, Ergodic Theory Dyn. Syst., Volume 17 (1997) no. 3, pp. 575-591 | DOI | MR | Zbl
[EH22] PFH spectral invariants and closing lemmas (2022) (https://arxiv.org/abs/2110.02463v4)
[Eis95] Commutative algebra. With a view toward algebraic geometry, Graduate Texts in Mathematics, 91, Springer, 1995 | MR | Zbl
[FH03] Periodic points of Hamiltonian surface diffeomorphisms, Geom. Topol., Volume 7 (2003), pp. 713-756 | DOI | MR | Zbl
[Gin10] The Conley conjecture, Ann. Math. (2), Volume 172 (2010) no. 2, pp. 1127-1180 | DOI | MR | Zbl
[Ham66] Homotopy groups of the space of homeomorphisms on a 2-manifold, Ill. J. Math., Volume 10 (1966), pp. 563-573 | MR | Zbl
[Hin09] Subharmonic solutions of Hamiltonian equations on tori, Ann. Math. (2), Volume 170 (2009) no. 2, pp. 529-560 | DOI | Zbl
[Jau14] Existence d’un feuilletage positivement transverse à un homéomorphisme de surface, Ann. Inst. Fourier, Volume 64 (2014) no. 4, pp. 1441-1476 | DOI | Numdam | MR | Zbl
[Kac47] On the notion of recurrence in discrete stochastic processes, Bull. Am. Math. Soc., Volume 53 (1947) no. 10, pp. 1002-1010 | DOI | Zbl
[Lel23] Sur les ensembles de rotation des homéomorphismes de surface en genre , Mémoires de la Société Mathématique de France. Nouvelle Série, 178, Société Mathématique de France, 2023 | DOI | Zbl
[Mat82] Topological proofs of some purely topological consequences of Caratheodory’s Theory of prime ends, Selected Studies: Physics-astrophysics, mathematics, history of science, Vol. dedic. A. Einstein, North-Holland, 1982, pp. 225-255 | MR | Zbl
[Mat97] Rotation sets of surface homeomorphisms, Bol. Soc. Bras. Mat., Nova Sér., Volume 28 (1997) no. 1, pp. 89-101 | DOI | MR | Zbl
[Mat00] Arnold conjecture for surface homeomorphisms, Topology Appl., Volume 104 (2000) no. 1-3, pp. 191-214 | DOI | MR | Zbl
[Oli87] On the generic existence of homoclinic points, Ergodic Theory Dyn. Syst., Volume 7 (1987) no. 4, pp. 567-595 | DOI | MR | Zbl
[Oli00] On the genericity of homoclinic orbits, Nonlinearity, Volume 13 (2000) no. 3, pp. 653-662 | DOI | MR | Zbl
[OU41] Measure-preserving homeomorphisms and metrical transitivity, Ann. Math. (2), Volume 42 (1941), pp. 874-920 | DOI | MR | Zbl
[Pix82] Planar homoclinic point, J. Differ. Equations, Volume 44 (1982) no. 3, pp. 365-382 | DOI | MR | Zbl
[Pol92] Rotation sets for homeomorphisms and homology, Trans. Am. Math. Soc., Volume 331 (1992) no. 2, pp. 881-894 | DOI | MR | Zbl
[PPS18] Rotation intervals and entropy on attracting annular continua, Entropy, Volume 22 (2018) no. 4, pp. 2145-2186 | DOI | Zbl
[Pra25] Periodoc points of rational area-preserving homeomorphisms, Ergodic Theory Dyn. Syst. (2025), pp. 1-18 | DOI
[Rob73] Closing stable and unstable manifolds on the two sphere, Proc. Am. Math. Soc., Volume 41 (1973), pp. 299-303 | DOI | MR | Zbl
[Sch57] Asymptotic cycles, Ann. Math. (2), Volume 66 (1957) no. 2, pp. 270-284 | DOI | MR | Zbl
[TAZ07] On periodic points of area preserving torus homeomorphisms, Far East J. Dyn. Syst., Volume 9 (2007) no. 3, pp. 371-378 | MR | Zbl