Discrete de Rham complex involving a discontinuous finite element space for velocities: the case of periodic straight triangular and Cartesian meshes
Annales Henri Lebesgue, Volume 8 (2025), pp. 417-452.

Metadata

Abstract

The aim of this article is to derive discontinuous finite elements vector spaces which can be put in a discrete de Rham complex for which the matching between the continuous and discrete cohomology spaces can be proven for periodic meshes.

First, the triangular case is addressed, for which we prove that this property holds for the classical discontinuous finite element space for vectors.

On Cartesian meshes, this result does not hold for the classical discontinuous finite element space for vectors. We then show how to use the de Rham complex found for triangular meshes for enriching the finite element space on Cartesian meshes in order to recover a de Rham complex, on which the same property is proven.


References

[ABF05] Arnold, Douglas N.; Boffi, Daniele; Falk, Richard S. Quadrilateral H( div ) finite elements, SIAM J. Numer. Anal., Volume 42 (2005) no. 6, pp. 2429-2451 | DOI | MR | Zbl

[AF89] Arnold, Douglas N.; Falk, Richard S. A uniformly accurate finite element method for the Reissner-Mindlin plate, SIAM J. Numer. Anal., Volume 26 (1989), pp. 1276-1290 | DOI | MR | Zbl

[AFW06] Arnold, Douglas N.; Falk, Richard S.; Winther, Ragnar Finite element exterior calculus, homological techniques, and applications, Acta Numer., Volume 15 (2006), pp. 1-155 | DOI | MR | Zbl

[AFW10] Arnold, Douglas N.; Falk, Richard S.; Winther, Ragnar Finite element exterior calculus: from Hodge theory to numerical stability, Bull. Am. Math. Soc., Volume 47 (2010) no. 2, pp. 281-354 | DOI | MR | Zbl

[AL14] Arnold, Douglas N.; Logg, Anders B. Periodic table of the finite elements, SIAM News, Volume 47 (2014) no. 9

[Arn18] Arnold, Douglas N. Finite element exterior calculus, CBMS-NSF Regional Conference Series in Applied Mathematics, 93, Society for Industrial and Applied Mathematics, 2018 | MR | Zbl

[Bal01] Balsara, Dinshaw S. Divergence-free adaptive mesh refinement for magnetohydrodynamics, J. Comput. Phys., Volume 174 (2001) no. 2, pp. 614-648 | DOI | Zbl

[Bal04] Balsara, Dinshaw S. Second-order-accurate schemes for magnetohydrodynamics with divergence-free reconstruction, Astrophys. J., Suppl. Ser., Volume 151 (2004) no. 1, pp. 149-184 | DOI

[BDM85] Brezzi, Franco; Douglas, Jim; Marini, Luisa D. Two families of mixed finite elements for second order elliptic problems, Numer. Math., Volume 47 (1985) no. 2, pp. 217-235 | DOI | MR | Zbl

[BE14] Bonelle, Jérôme; Ern, Alexandre Analysis of compatible discrete operator schemes for elliptic problems on polyhedral meshes, ESAIM, Math. Model. Numer. Anal., Volume 48 (2014) no. 2, pp. 553-581 | DOI | Numdam | MR | Zbl

[BE15] Bonelle, Jérôme; Ern, Alexandre Analysis of compatible discrete operator schemes for the Stokes equations on polyhedral meshes, IMA J. Numer. Anal., Volume 35 (2015) no. 4, pp. 1672-1697 | DOI | MR | Zbl

[BF91] Brezzi, Franco; Fortin, Michel Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, 15, Springer, 1991 | DOI | MR | Zbl

[Bon14] Bonelle, Jérôme Compatible Discrete Operator schemes on polyhedral meshes for elliptic and Stokes equations, Ph. D. Thesis, Université Paris-Est, Paris, France (2014)

[Bos88] Bossavit, Alain Whitney forms: A class of finite elements for three-dimensional computations in electromagnetism, IEE Proc. A Phys. Sci. Meas. Instrum. Manag. Educ. Rev., Volume 135 (1988) no. 8, pp. 493-500 | DOI

[Bos98] Bossavit, Alain Computational electromagnetism: variational formulations, complementarity, edge elements, Academic Press Inc., 1998 | MR | Zbl

[BS99] Balsara, Dinshaw S.; Spicer, Daniel S. A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations, J. Comput. Phys., Volume 149 (1999) no. 2, pp. 270-292 | DOI | MR | Zbl

[CR74] Crouzeix, Michel; Raviart, Pierre-Arnaud Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I., Rev. Franc. Automat. Inform. Rech. Operat., Volume 7 (1974) no. R3, pp. 33-75 | DOI | MR | Zbl

[DJOR16] Dellacherie, Stéphane; Jung, Jonathan; Omnes, Pascal; Raviart, Pierre-Arnaud Construction of modified Godunov type schemes accurate at any Mach number for the compressible Euler system, Math. Models Methods Appl. Sci., Volume 26 (2016) no. 13, pp. 2525-2615 | DOI | MR | Zbl

[DOR10] Dellacherie, Stéphane; Omnes, Pascal; Rieper, Felix The influence of cell geometry on the Godunov scheme applied to the linear wave equation, J. Comput. Phys., Volume 229 (2010) no. 14, pp. 5315-5338 | DOI | MR | Zbl

[DPD20] Di Pietro, Daniele A.; Droniou, Jérôme The Hybrid High-Order method for polytopal meshes, Modeling, Simulation and Applications series, 19, Springer, 2020 | DOI | MR | Zbl

[EG20] Ern, Alexandre; Guermond, Jean-Luc Finite elements I: Approximation and interpolation, Texts in Applied Mathematics, 72, Springer, 2020 | DOI | MR | Zbl

[Gui09] Guillard, Hervé On the behavior of upwind schemes in the low Mach number limit. IV: P0 approximation on triangular and tetrahedral cells, Comput. Fluids, Volume 38 (2009) no. 10, pp. 1969-1972 | DOI | MR | Zbl

[Hip01] Hiptmair, Ralf Discrete Hodge operators, Numer. Math., Volume 90 (2001) no. 2, pp. 265-289 | DOI | MR | Zbl

[Hip02] Hiptmair, Ralf Finite elements in computational electromagnetism, Acta Numer., Volume 11 (2002), pp. 237-339 | DOI | MR | Zbl

[HLX22] Hong, Qingguo; Li, Yuwen; Xu, Jinchao An extended Galerkin analysis in finite element exterior calculus, Math. Comput., Volume 91 (2022) no. 335, pp. 1077-1106 | DOI | MR | Zbl

[JP22] Jung, Jonathan; Perrier, Vincent Steady low Mach number flows: identification of the spurious mode and filtering method, J. Comput. Phys., Volume 468 (2022), 111462 | DOI | MR | Zbl

[JP24a] Jung, Jonathan; Perrier, Vincent Behavior of the Discontinuous Galerkin Method for Compressible Flows at Low Mach Number on Triangles and Tetrahedrons, SIAM J. Sci. Comput., Volume 46 (2024) no. 1, p. A452-A482 | DOI | MR | Zbl

[JP24b] Jung, Jonathan; Perrier, Vincent A curl preserving finite volume scheme by space velocity enrichment. Application to the low Mach number accuracy problem, J. Comput. Phys., Volume 515 (2024), 113252, 29 pages | DOI | MR | Zbl

[Lic17] Licht, Martin Werner Complexes of discrete distributional differential forms and their homology theory, Found. Comput. Math., Volume 17 (2017) no. 4, pp. 1085-1122 | DOI | MR | Zbl

[MBE22] Milani, Riccardo; Bonelle, Jérôme; Ern, Alexandre Artificial compressibility methods for the incompressible Navier–Stokes equations using lowest-order face-based schemes on polytopal meshes, Comput. Methods Appl. Math., Volume 22 (2022) no. 1, pp. 133-154 | DOI | MR | Zbl

[Per24] Perrier, Vincent Development of discontinuous Galerkin methods for hyperbolic systems that preserve a curl or a divergence constraint (2024) | arXiv | Zbl

[RT77a] Raviart, Pierre-Arnaud; Thomas, Jean-Marie A mixed finite element method for 2-nd order elliptic problems, Mathematical aspects of finite element methods. Proceedings of the conference held in Rome, December 10–12, 1975 (Lecture Notes in Mathematics), Volume 606, Springer, 1977, pp. 292-315 | DOI | MR | Zbl

[RT77b] Raviart, Pierre-Arnaud; Thomas, Jean-Marie Primal hybrid finite element methods for 2nd order elliptic equations, Math. Comput., Volume 31 (1977) no. 138, pp. 391-413 | DOI | MR | Zbl

[TD17] Tavelli, Maurizio; Dumbser, Michael A pressure-based semi-implicit space–time discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier–Stokes equations at all Mach numbers, J. Comput. Phys., Volume 341 (2017), pp. 341-376 | DOI | MR | Zbl