Metadata
Abstract
Using the global Kuranishi charts constructed by Hirschi–Swaminathan, we define gravitational descendants and equivariant Gromov–Witten invariants for general symplectic manifolds. We prove that these invariants satisfy the axioms of Kontsevich and Manin and their generalisations. A virtual localisation formula holds in this setting; we use it to derive an explicit formula for the equivariant Gromov–Witten invariants of Hamiltonian GKM manifolds. In particular, the symplectic Gromov–Witten invariants of smooth toric varieties agree with their algebro-geometric counterpart. In the semipositive case, the invariants studied here recover those of Ruan and Tian.
References
[AB84] The moment map and equivariant cohomology, Topology, Volume 23 (1984) no. 1, pp. 1-28 | DOI | MR | Zbl
[ACG11] Geometry of algebraic curves. Volume II, Grundlehren der Mathematischen Wissenschaften, 268, Springer, 2011 (with a contribution by Joseph Daniel Harris) | DOI | MR | Zbl
[AMS21] Complex cobordism, Hamiltonian loops and global Kuranishi charts (2021) | arXiv | Zbl
[AMS24] Gromov–Witten invariants in complex and Morava-local -theories, Geom. Funct. Anal., Volume 34 (2024) no. 6, pp. 1647-1733 | DOI | MR | Zbl
[Aue73] Fiber integration in smooth bundles, Pac. J. Math., Volume 44 (1973), pp. 33-43 | DOI | MR | Zbl
[Beh99] The product formula for Gromov–Witten invariants, J. Algebr. Geom., Volume 8 (1999) no. 3, pp. 529-541 | MR | Zbl
[Beh04] Cohomology of stacks, School and conference on intersection theory and moduli (ICTP Lecture Notes), Volume 19, The Abdus Salam International Centre for Theoretical Physics, 2004, pp. 249-294 | Zbl
[BF97] The intrinsic normal cone, Invent. Math., Volume 128 (1997) no. 1, pp. 45-88 | DOI | MR | Zbl
[Bre72] Introduction to compact transformation groups, Pure and Applied Mathematics, 46, Academic Press Inc., 1972 | MR | Zbl
[Bre97] Sheaf theory, Graduate Texts in Mathematics, 170, Springer, 1997 | DOI | MR | Zbl
[Bro62] Locally flat imbeddings of topological manifolds, Ann. Math. (2), Volume 75 (1962), pp. 331-341 | DOI | Zbl
[Bro14] Gromov–Witten invariants of toric fibrations, Int. Math. Res. Not., Volume 2014 (2014) no. 19, pp. 5437-5482 | MR | DOI | Zbl
[BT82] Differential forms in algebraic topology, Graduate Texts in Mathematics, 82, Springer, 1982 | DOI | MR | Zbl
[CGMiRS02] The symplectic vortex equations and invariants of Hamiltonian group actions, J. Symplectic Geom., Volume 1 (2002) no. 3, pp. 543-645 | DOI | MR | Zbl
[CM07] Symplectic hypersurfaces and transversality in Gromov–Witten theory, J. Symplectic Geom., Volume 5 (2007) no. 3, pp. 281-356 | DOI | MR | Zbl
[CT10] Virtual manifolds and localization, Acta Math. Sin., Engl. Ser., Volume 26 (2010) no. 1, pp. 1-24 | MR | DOI | Zbl
[Del88] Hamiltoniens périodiques et images convexes de l’application moment, Bull. Soc. Math. Fr., Volume 116 (1988) no. 3, pp. 315-339 | Numdam | DOI | MR | Zbl
[Dua03] The degree of a Schubert variety, Adv. Math., Volume 180 (2003) no. 1, pp. 112-133 | MR | DOI | Zbl
[Dub14] Gromov–Witten invariants and integrable hierarchies of topological type, Topology, geometry, integrable systems, and mathematical physics (American Mathematical Society Translations, Series 2), Volume 234, American Mathematical Society, 2014, pp. 141-171 | DOI | MR | Zbl
[EGH00] Introduction to symplectic field theory, GAFA 2000. Visions in mathematics – Towards 2000 (Tel Aviv, 1999). Part II (Geometric and Functional Analysis), Volume Special Volume, Birkhäuser, 2000, pp. 560-673 | DOI | MR | Zbl
[Flo88] Morse theory for Lagrangian intersections, J. Differ. Geom., Volume 28 (1988) no. 3, pp. 513-547 | MR | DOI | Zbl
[FO99] Arnold conjecture and Gromov–Witten invariant, Topology, Volume 38 (1999) no. 5, pp. 933-1048 | DOI | MR | Zbl
[FP00a] Hodge integrals and Gromov–Witten theory, Invent. Math., Volume 139 (2000) no. 1, pp. 173-199 | DOI | MR | Zbl
[FP00b] Logarithmic series and Hodge integrals in the tautological ring, Mich. Math. J., Volume 48 (2000), pp. 215-252 (with an appendix by Don Zagier, dedicated to William Fulton on the occasion of his 60th birthday) | DOI | MR | Zbl
[Ger13] Geometric transversality in higher genus Gromov–Witten theory (2013) | arXiv | Zbl
[Giv96] Equivariant Gromov–Witten invariants, Int. Math. Res. Not., Volume 1996 (1996) no. 13, pp. 613-663 | DOI | MR | Zbl
[Giv01a] Gromov–Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J., Volume 1 (2001) no. 4, pp. 551-568 (dedicated to the memory of I. G. Petrovskii on the occasion of his 100th anniversary) | Zbl | DOI | MR
[Giv01b] Semisimple Frobenius structures at higher genus, Int. Math. Res. Not., Volume 2001 (2001) no. 23, pp. 1265-1286 | DOI | MR | Zbl
[GK95] Quantum cohomology of flag manifolds and Toda lattices, Commun. Math. Phys., Volume 168 (1995) no. 3, pp. 609-641 | DOI | MR | Zbl
[GKM98] Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math., Volume 131 (1998) no. 1, pp. 25-83 | DOI | MR | Zbl
[GKZ20a] GKM theory and Hamiltonian non-Kähler actions in dimension 6, Adv. Math., Volume 368 (2020), 107141, 17 pages | DOI | MR | Zbl
[GKZ20b] Symplectic and Kähler structures on biquotients, J. Symplectic Geom., Volume 18 (2020) no. 3, pp. 791-813 | MR | Zbl | DOI
[GKZ22a] GKM manifolds are not rigid, Algebr. Geom. Topol., Volume 22 (2022) no. 7, pp. 3511-3532 | DOI | MR | Zbl
[GKZ22b] Low-dimensional GKM theory (2022) | arXiv
[GKZ23] Realization of GKM fibrations and new examples of Hamiltonian non-Kähler actions, Compos. Math., Volume 159 (2023) no. 10, pp. 2149-2190 | DOI | MR | Zbl
[GP99] Localization of virtual classes, Invent. Math., Volume 135 (1999) no. 2, pp. 487-518 | DOI | MR | Zbl
[Gro85] Pseudo holomorphic curves in symplectic manifolds, Invent. Math., Volume 82 (1985) no. 2, pp. 307-347 | DOI | MR | Zbl
[GW22] Quantum Kirwan for quantum K-theory, Facets of algebraic geometry. Vol. I (London Mathematical Society Lecture Note Series), Volume 472, Cambridge University Press, 2022, pp. 265-332 | DOI | MR | Zbl
[GZ00] Equivariant de Rham theory and graphs, Surveys in differential geometry (Surveys in Differential Geometry), Volume 7, International Press, 2000, pp. 221-257 | DOI | MR | Zbl
[GZ01] 1-skeleta, Betti numbers, and equivariant cohomology, Duke Math. J., Volume 107 (2001) no. 2, pp. 283-349 | DOI | MR | Zbl
[HKK + 03] Mirror symmetry, Clay Mathematics Monographs, 1, American Mathematical Society; Clay Mathematics Institute, 2003 (with a preface by Vafa) | MR | Zbl
[HS24] Global Kuranishi charts and a product formula in symplectic Gromov–Witten theory, Sel. Math., New Ser., Volume 30 (2024) no. 5, 87, 74 pages | DOI | MR | Zbl
[Hsi75] Cohomology theory of topological transformation groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, 85, Springer, 1975 | DOI | MR | Zbl
[HW24] On Donaldson’s 4-6 question (2024) | arXiv
[HWZ17] Applications of polyfold theory I: The polyfolds of Gromov–Witten theory, Memoirs of the American Mathematical Society, 1179, American Mathematical Society, 2017 | DOI | MR | Zbl
[HZ99] Pseudoholomorphic curves and dynamics, The Arnoldfest (Toronto, ON, 1997) (Fields Institute Communications), Volume 24, American Mathematical Society, 1999, pp. 225-239 | DOI | MR | Zbl
[IP13] A natural Gromov–Witten virtual fundamental class (2013) | arXiv | Zbl
[IP19a] Relating VFCs on thin compactifications, Math. Ann., Volume 375 (2019), pp. 845-893 | MR | DOI | Zbl
[IP19b] Thin compactifications and relative fundamental classes, J. Symplectic Geom., Volume 17 (2019) no. 3, pp. 703-752 | DOI | MR | Zbl
[Ive86] Cohomology of sheaves, Universitext, Springer, 1986 | DOI | MR | Zbl
[Joy17] Kuranishi spaces and Symplectic Geometry, 2017 https://people.maths.ox.ac.uk/joyce/kubook.pdf
[Kir84] Cohomology of quotients in symplectic and algebraic geometry, Mathematical Notes, 31, Princeton University Press, 1984 | DOI | MR | Zbl
[KKP03] Functoriality in intersection theory and a conjecture of Cox, Katz, and Lee, J. Pure Appl. Algebra, Volume 179 (2003) no. 1-2, pp. 127-136 | MR | DOI | Zbl
[KM94] Gromov–Witten classes, quantum cohomology, and enumerative geometry, Commun. Math. Phys., Volume 164 (1994) no. 3, pp. 525-562 | DOI | MR | Zbl
[KM98] Relations between the correlators of the topological sigma-model coupled to gravity, Commun. Math. Phys., Volume 196 (1998) no. 2, pp. 385-398 | MR | Zbl | DOI
[Kon95] Enumeration of rational curves via torus actions, The moduli space of curves (Texel Island, 1994) (Progress in Mathematics), Volume 129, Birkhäuser, 1995, pp. 335-368 | DOI | MR | Zbl
[KS90] Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften, 292, Springer, 1990 | DOI | MR | Zbl
[Kur09] Introduction to GKM theory, 2009 https://mathsci.kaist.ac.kr/...
[Las79] Stable -smoothing, Algebraic topology, Waterloo, 1978 (Lecture Notes in Mathematics), Volume 741, Springer, 1979, pp. 283-306 | DOI | MR | Zbl
[Liu13] Localization in Gromov–Witten theory and orbifold Gromov–Witten theory, Handbook of moduli. Vol. II (Advanced Lectures in Mathematics), Volume 25, International Press, 2013, pp. 353-425 | MR | Zbl
[LMP99] Topological rigidity of Hamiltonian loops and quantum homology, Invent. Math., Volume 135 (1999) no. 2, pp. 369-385 | DOI | MR | Zbl
[LP21] Symplectic and Kähler structures on -bundles over , Sel. Math., New Ser., Volume 27 (2021) no. 5, 93, 24 pages | Zbl | DOI | MR
[LS17] Equivariant Gromov–Witten invariants of algebraic GKM manifolds, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 13 (2017), 048, 21 pages | DOI | MR | Zbl
[LT98] Virtual moduli cycles and Gromov–Witten invariants of general symplectic manifolds, Topics in symplectic -manifolds (Irvine, CA, 1996) (First International Press Lecture Series), Volume 1, International Press, 1998, pp. 47-83 | MR | Zbl
[LT99] Comparison of algebraic and symplectic Gromov–Witten invariants, Asian J. Math., Volume 3 (1999) no. 3, pp. 689-728 | DOI | MR | Zbl
[Man99] Frobenius manifolds, quantum cohomology, and moduli spaces, Colloquium Publications, 47, American Mathematical Society, 1999 | DOI | MR | Zbl
[McD09] Hamiltonian -manifolds are uniruled, Duke Math. J., Volume 146 (2009) no. 3, pp. 449-507 | DOI | MR | Zbl
[Mei98] Symplectic surgery and the -Dirac operator, Adv. Math., Volume 134 (1998) no. 2, pp. 240-277 | DOI | MR | Zbl
[MS12] -holomorphic curves and symplectic topology, Colloquium Publications, 52, American Mathematical Society, 2012 | MR | Zbl
[Mum83] Towards an enumerative geometry of the moduli space of curves, Arithmetic and Geometry: Papers dedicated to IR Shafarevich on the Occasion of His Sixtieth Birthday. Volume II: Geometry, Springer, 1983, pp. 271-328 | Zbl
[Mun01] Lifts of smooth group actions to line bundles, Bull. Lond. Math. Soc., Volume 33 (2001) no. 3, pp. 351-361 | MR | DOI | Zbl
[Mun03] Hamiltonian Gromov–Witten invariants, Topology, Volume 42 (2003) no. 3, pp. 525-553 | Zbl | DOI
[MW17] Smooth Kuranishi atlases with isotropy, Geom. Topol., Volume 21 (2017) no. 5, pp. 2725-2809 | DOI | MR | Zbl
[NWZ14] Morphisms of CohFT algebras and quantization of the Kirwan map, Symplectic, Poisson, and noncommutative geometry (Mathematical Sciences Research Institute Publications), Volume 62, Cambridge University Press, 2014, pp. 131-170 | DOI | MR | Zbl
[Par16] An algebraic approach to virtual fundamental cycles on moduli spaces of pseudo-holomorphic curves, Geom. Topol., Volume 20 (2016) no. 2, pp. 779-1034 | DOI | MR | Zbl
[Par22] Enough vector bundles on orbispaces, Compos. Math., Volume 158 (2022) no. 11, pp. 2046-2081 | MR | DOI | Zbl
[Pix13] The tautological ring of the moduli space of curves, Ph. D. Thesis, Princeton University, Princeton, USA (2013) | MR
[RRS08] The moduli space of regular stable maps, Math. Z., Volume 259 (2008) no. 3, pp. 525-574 | DOI | MR | Zbl
[RT95] A mathematical theory of quantum cohomology, J. Differ. Geom., Volume 42 (1995) no. 2, pp. 259-367 | DOI | MR | Zbl
[RT97] Higher genus symplectic invariants and sigma models coupled with gravity, Invent. Math., Volume 130 (1997) no. 3, pp. 455-516 | MR | Zbl | DOI
[Sal99] Lectures on Floer homology (IAS/Park City Mathematics Series), Volume 7, American Mathematical Society, 1999, pp. 143-229 | DOI | MR | Zbl
[Sch23] Pseudocycle Gromov–Witten invariants are a strict subset of polyfold Gromov–Witten invariants (2023) | arXiv | Zbl
[Sei99] On the group of symplectic automorphisms of , Northern California Symplectic Geometry Seminar (American Mathematical Society Translations, Series 2), Volume 196, American Mathematical Society, 1999, pp. 237-250 | DOI | MR | Zbl
[Sie99] Algebraic and symplectic Gromov–Witten invariants coincide, Ann. Inst. Fourier, Volume 49 (1999) no. 6, pp. 1743-1795 | Numdam | DOI | MR | Zbl
[Spi99] The Gromov–Witten invariants of symplectic toric manifolds, and their quantum cohomology ring, C. R. Acad. Sci., Paris, Sér. I, Math., Volume 329 (1999) no. 8, pp. 699-704 | DOI | MR | Zbl
[Swa21] Rel- structures on Gromov–Witten moduli spaces, J. Symplectic Geom., Volume 19 (2021) no. 2, pp. 413-473 | DOI | MR | Zbl
[Tel12] The structure of 2D semi-simple field theories, Invent. Math., Volume 188 (2012) no. 3, pp. 525-588 | DOI | MR | Zbl
[Tol98] Examples of non-Kähler Hamiltonian torus actions, Invent. Math., Volume 131 (1998) no. 2, pp. 299-310 | DOI | MR | Zbl
[TX17] The symplectic approach of gauged linear -model, Proceedings of the Gökova Geometry-Topology Conference 2016, International Press; Gökova Geometry/Topology Conference (GGT) (2017), pp. 86-111 | MR | Zbl
[Ush11] Deformed Hamiltonian Floer theory, capacity estimates and Calabi quasimorphisms, Geom. Topol., Volume 15 (2011) no. 3, pp. 1313-1417 | DOI | MR | Zbl
[Wit91] Two-dimensional gravity and intersection theory on moduli space, Surveys in differential geometry. Vol. I: Proceedings of the conference on geometry and topology, (Cambridge, MA, 1990), American Mathematical Society; Lehigh University, 1991, pp. 243-310 | MR | Zbl
[Woo98] Multiplicity-free Hamiltonian actions need not be Kähler, Invent. Math., Volume 131 (1998) no. 2, pp. 311-319 | DOI | MR | Zbl
[Xu24] Quantum Kirwan map and quantum Steenrod operation (2024) | arXiv | Zbl
[Zin08] Pseudocycles and integral homology, Trans. Am. Math. Soc., Volume 360 (2008) no. 5, pp. 2741-2765 | MR | DOI | Zbl
[Zin17] Real Ruan–Tian Perturbations (2017) | arXiv | Zbl