Quasi-isometric free group representations into $\operatorname{SL}_3(\mathbb{R})$
Annales Henri Lebesgue, Volume 8 (2025), pp. 965-994

Metadata

Keywords Discrete subgroups of Lie groups ,  geometric group theory

Abstract

We study quasi-isometric representations of finitely generated non-abelian free groups into some higher rank semi-simple Lie groups which are not Anosov, nor approximated by Anosov. We show in some cases that these can be perturbed to be non-quasi-isometric, or to have some instability properties with respect to their action on the flag space.


References

[ABY10] Avila, Artur; Bochi, Jairo; Yoccoz, Jean-Christophe Uniformly hyperbolic finite-valued SL(2,)-cocycles, Comment. Math. Helv., Volume 85 (2010) no. 4, pp. 813-884 | MR | DOI | Zbl

[Bar10] Barbot, Thierry Three-dimensional Anosov flag manifolds, Geom. Topol., Volume 14 (2010) no. 1, pp. 153-191 | MR | DOI | Zbl

[BH99] Bridson, Martin R.; Haefliger, André Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, 319, Springer, 1999 | DOI | MR | Zbl

[BPS19] Bochi, Jairo; Potrie, Rafael; Sambarino, Andrés Anosov representations and dominated splittings, J. Eur. Math. Soc., Volume 21 (2019) no. 11, pp. 3343-3414 | MR | DOI | Zbl

[BQ16] Benoist, Yves; Quint, Jean-François Random walks on reductive groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 62, Springer, 2016 | MR | DOI | Zbl

[Cor92] Corlette, Kevin Archimedean superrigidity and hyperbolic geometry, Ann. Math. (2), Volume 135 (1992) no. 1, pp. 165-182 | MR | DOI | Zbl

[Dal11] Dal’Bo, Françoise Geodesic and horocyclic trajectories, Universitext, EDP Sciences; Springer, 2011 (translation from the french by the author) | MR | DOI | Zbl

[DGK + 23] Danciger, Jeffrey; Guéritaud, François; Kassel, Fanny; Lee, Gye-Seon; Marquis, Ludovic Convex cocompactness for Coxeter groups (2023) | arXiv

[DH24] Dey, Subhadip; Hurtado, Sebastian Remarks on discrete subgroups with full limit sets in higher rank Lie groups (2024) | arXiv

[DK06] DeBlois, Jason; Kent, Richard P. IV Surface groups are frequently faithful, Duke Math. J., Volume 131 (2006) no. 2, pp. 351-362 | MR | DOI | Zbl

[FW07] Funar, Louis; Wolff, Maxime Non-injective representations of a closed surface group into PSL(2,), Math. Proc. Camb. Philos. Soc., Volume 142 (2007) no. 2, pp. 289-304 | MR | DOI | Zbl

[GGKW17] Guéritaud, François; Guichard, Olivier; Kassel, Fanny; Wienhard, Anna Anosov representations and proper actions, Geom. Topol., Volume 21 (2017) no. 1, pp. 485-584 | MR | DOI | Zbl

[Glu11] Glutsyuk, Alexey Instability of nondiscrete free subgroups in Lie groups, Transform. Groups, Volume 16 (2011) no. 2, pp. 413-479 | MR | DOI | Zbl

[GW12] Guichard, Olivier; Wienhard, Anna Anosov representations: domains of discontinuity and applications, Invent. Math., Volume 190 (2012) no. 2, pp. 357-438 | MR | DOI | Zbl

[Hit92] Hitchin, Nigel J. Lie groups and Teichmüller space, Topology, Volume 31 (1992) no. 3, pp. 449-473 | MR | DOI | Zbl

[Kap08] Kapovich, Michael Kleinian groups in higher dimensions, Geometry and dynamics of groups and spaces (Progress in Mathematics), Volume 265, Birkhäuser, 2008, pp. 487-564 | DOI | MR | Zbl

[Kas18] Kassel, Fanny Geometric structures and representations of discrete groups, Proceedings of the international congress of mathematicians 2018, ICM 2018, Rio de Janeiro, Brazil, August 1–9, 2018. Volume II. Invited lectures, World Scientific; Sociedade Brasileira de Matemática, 2018, pp. 1115-1151 | MR | Zbl | DOI

[Kat92] Katok, Svetlana Fuchsian groups, University of Chicago Press, 1992 | MR | Zbl

[KLP17] Kapovich, Michael; Leeb, Bernhard; Porti, Joan Anosov subgroups: dynamical and geometric characterizations, Eur. J. Math., Volume 3 (2017) no. 4, pp. 808-898 | MR | DOI | Zbl

[Lab06] Labourie, François Anosov flows, surface groups and curves in projective space, Invent. Math., Volume 165 (2006) no. 1, pp. 51-114 | MR | DOI | Zbl

[Lah23] Lahn, Max Reducible Suspensions of Anosov Representations (2023) | arXiv | Zbl

[Mañ78] Mañé, Ricardo Contributions to the stability conjecture, Topology, Volume 17 (1978), pp. 383-396 | MR | DOI | Zbl

[Mor15] Morris, Dave W. Introduction to arithmetic groups, Deductive Press, 2015 | Zbl | MR

[MR95] McShane, Greg; Rivin, Igor A norm on homology of surfaces and counting simple geodesics, Int. Math. Res. Not., Volume 1995 (1995) no. 2, pp. 61-69 | Zbl | DOI | MR

[Pot18] Potrie, Rafael Robust dynamics, invariant structures and topological classification, Proceedings of the international congress of mathematicians 2018, ICM 2018, Rio de Janeiro, Brazil, August 1–9, 2018. Volume III. Invited lectures, World Scientific; Sociedade Brasileira de Matemática, 2018, pp. 2063-2085 | MR | DOI | Zbl

[Sul85] Sullivan, Dennis Quasiconformal homeomorphisms and dynamics. II: Structural stability implies hyperbolicity for Kleinian groups, Acta Math., Volume 155 (1985), pp. 243-260 | MR | DOI | Zbl

[Tso23] Tsouvalas, Konstantinos Quasi-isometric embeddings inapproximable by Anosov representations, J. Inst. Math. Jussieu, Volume 22 (2023) no. 5, pp. 2497-2514 | DOI | Zbl | MR

[Tso24] Tsouvalas, Konstantinos Robust quasi-isometric embeddings inapproximable by Anosov representations (2024) | arXiv | Zbl

[Wie18] Wienhard, Anna An invitation to higher Teichmüller theory, Proceedings of the international congress of mathematicians 2018, ICM 2018, Rio de Janeiro, Brazil, August 1–9, 2018. Volume II. Invited lectures, World Scientific; Sociedade Brasileira de Matemática, 2018, pp. 1013-1039 | MR | DOI | Zbl