Sharp systolic inequalities for invariant tight contact forms on principal $\mathbb{S}^1$-bundles over $\mathbb{S}^2$
Annales Henri Lebesgue, Volume 8 (2025), pp. 995-1021

Metadata

Keywords Contact dynamics ,  systolic inequalities ,  surfaces of section

Abstract

The systole of a contact form $\alpha $ is defined as the shortest period of closed Reeb orbits of $\alpha $. Given a non-trivial $\mathbb{S}^1$-principal bundle over $\mathbb{S}^2$ with total space $M$, we prove a sharp systolic inequality for the class of tight contact forms on $M$ invariant under the $\mathbb{S}^1$-action. This inequality exhibits a behavior which depends on the Euler class of the bundle in a subtle way. As applications, we prove a sharp systolic inequality for rotationally symmetric Finsler metrics on $\mathbb{S}^2$, a systolic inequality for the shortest contractible closed Reeb orbit, and a particular case of a conjecture by Viterbo.


References

[AAKO14] Artstein-Avidan, Shiri; Karasev, Roman; Ostrover, Yaron From symplectic measurements to the Mahler conjecture, Duke Math. J., Volume 163 (2014) no. 11, pp. 2003-2022 | MR | DOI | Zbl

[AASS23] Abbondandolo, Alberto; Alves, Marcelo R. R.; Sağlam, Murat; Schlenk, Felix Entropy collapse versus entropy rigidity for Reeb and Finsler flows, Sel. Math., New Ser., Volume 29 (2023) no. 5, 67, 99 pages | Zbl | MR | DOI

[AB21] Asselle, Luca; Benedetti, Gabriele Integrable Magnetic Flows on the Two-Torus: Zoll Examples and Systolic Inequalities, J. Geom. Anal., Volume 31 (2021) no. 3, pp. 2924-2940 | MR | DOI | Zbl

[AB23] Abbondandolo, Alberto; Benedetti, Gabriele On the local systolic optimality of Zoll contact forms, Geom. Funct. Anal., Volume 33 (2023) no. 2, pp. 299-363 | MR | DOI | Zbl

[ABE23] Abbondandolo, Alberto; Benedetti, Gabriele; Edtmair, Oliver Symplectic capacities of domains close to the ball and Banach-Mazur geodesics in the space of contact forms (2023) | arXiv

[ABHS17] Abbondandolo, Alberto; Bramham, Barney; Hryniewicz, Umberto L.; Salomão, Pedro A. S. A systolic inequality for geodesic flows on the two-sphere, Math. Ann., Volume 367 (2017) no. 1, pp. 701-753 | MR | DOI | Zbl

[ABHS18] Abbondandolo, Alberto; Bramham, Barney; Hryniewicz, Umberto L.; Salomão, Pedro A. S. Sharp systolic inequalities for Reeb flows on the three-sphere, Invent. Math., Volume 211 (2018) no. 2, pp. 687-778 | MR | DOI | Zbl

[ABHS19] Abbondandolo, Alberto; Bramham, Barney; Hryniewicz, Umberto L.; Salomão, Pedro A. S. Contact forms with large systolic ratio in dimension three, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), Volume 19 (2019) no. 4, pp. 1561-1582 | MR | DOI | Zbl

[ABHS21] Abbondandolo, Alberto; Bramham, Barney; Hryniewicz, Umberto L.; Salomão, Pedro A. S. Sharp systolic inequalities for Riemannian and Finsler spheres of revolution, Trans. Am. Math. Soc., Volume 374 (2021) no. 3, pp. 1815-1845 | DOI | MR | Zbl

[AG21] Albach, Bernhard; Geiges, Hansjörg Surfaces of Section for Seifert Fibrations, Arnold Math. J., Volume 7 (2021) no. 4, pp. 573-597 | MR | DOI | Zbl

[AGZ23] Albers, Peter; Geiges, Hansjörg; Zehmisch, Kai A Symplectic Dynamics Proof of the Degree–Genus Formula, Arnold Math. J., Volume 9 (2023) no. 1, pp. 41-68 | MR | DOI | Zbl

[ALM22] Abbondandolo, Alberto; Lange, Christian; Mazzucchelli, Marco Higher systolic inequalities for 3-dimensional contact manifolds, J. Éc. Polytech., Math., Volume 9 (2022), pp. 807-851 | Numdam | MR | DOI | Zbl

[BBLM23] Baracco, Luca; Bernardi, Olga; Lange, Christian; Mazzucchelli, Marco On the local maximizers of higher capacity ratios (2023) | arXiv | Zbl

[Ben21] Benedetti, Gabriele First steps into the world of systolic inequalities: From Riemannian to symplectic geometry (2021) | arXiv | Zbl

[BK21] Benedetti, Gabriele; Kang, Jungsoo A local contact systolic inequality in dimension three, J. Eur. Math. Soc., Volume 23 (2021) no. 3, pp. 721-764 | MR | DOI | Zbl

[CDHR22] Colin, Vincent; Dehornoy, Pierre; Hryniewicz, Umberto L.; Rechtman, Ana Generic properties of 3-dimensional Reeb flows: Birkhoff sections and entropy (2022) | arXiv

[CE22] Chaidez, Julian; Edtmair, Oliver 3D convex contact forms and the Ruelle invariant, Invent. Math., Volume 229 (2022) no. 1, pp. 243-301 | MR | DOI | Zbl

[CGM20] Cristofaro-Gardiner, Daniel; Mazzucchelli, Marco The action spectrum characterizes closed contact 3-manifolds all of whose Reeb orbits are closed, Comment. Math. Helv., Volume 95 (2020) no. 3, pp. 461-481 | DOI | MR | Zbl

[CKMS22] Contreras, Gonzalo; Knieper, Gerhard; Mazzucchelli, Marco; Schulz, Benjamin H. Surfaces of section for geodesic flows of closed surfaces (2022) | arXiv

[CM22] Contreras, Gonzalo; Mazzucchelli, Marco Existence of Birkhoff sections for Kupka–Smale Reeb flows of closed contact 3-manifolds, Geom. Funct. Anal., Volume 32 (2022) no. 5, pp. 951-979 | MR | DOI | Zbl

[Cro88] Croke, Christopher B. Area and the length of the shortest closed geodesic, J. Differ. Geom., Volume 27 (1988) no. 1, pp. 1-21 | MR | Zbl | DOI

[Edt24] Edtmair, Oliver Disk-Like Surfaces of Section and Symplectic Capacities, Geom. Funct. Anal., Volume 34 (2024) no. 5, pp. 1399-1459 | Zbl | MR | DOI

[Eps72] Epstein, David B. A. Periodic Flows on Three-Manifolds, Ann. Math., Volume 95 (1972) no. 1, pp. 66-82 | DOI | Zbl

[Gei08] Geiges, Hansjörg An Introduction to Contact Topology, Cambridge Studies in Advanced Mathematics, 109, Cambridge University Press, 2008 | MR | DOI | Zbl

[GHR22] Gutt, Jean; Hutchings, Michael; Ramos, Vinicius G. B. Examples around the strong Viterbo conjecture, J. Fixed Point Theory Appl., Volume 24 (2022) no. 2, 41, 22 pages | DOI | MR | Zbl

[GHS24] Geiges, Hansjörg; Hedicke, Jakob; Sağlam, Murat Bott-integrable Reeb flows on 3-manifolds, J. Lond. Math. Soc., Volume 109 (2024) no. 1, e12859, 42 pages | MR | DOI | Zbl

[Ghy09] Ghys, Étienne Right-handed Vector Fields and the Lorenz Attractor, Jpn. J. Math., Volume 4 (2009) no. 1, pp. 47-61 | MR | DOI | Zbl

[Gir99] Giroux, Emmanuel Structures de contact sur les variétés fibrées en cercles au-dessus d’une surface, Comment. Math. Helv., Volume 76 (1999) no. 2, pp. 218-262 | MR | DOI | Zbl

[GL18] Geiges, Hansjörg; Lange, Christian Seifert fibrations of lens spaces, Abh. Math. Semin. Univ. Hamb., Volume 88 (2018) no. 1, pp. 1-22 | MR | DOI | Zbl

[Gro83] Gromov, Mikhael Filling Riemannian manifolds, J. Differ. Geom., Volume 18 (1983) no. 1, pp. 1-147 | DOI | MR | Zbl

[HHR23] Hryniewicz, Umberto L.; Hutchings, Michael; Ramos, Vinicius G. B. Hopf orbits and the first ECH capacity (2023) | arXiv

[HKO24] Haim-Kislev, Pazit; Ostrover, Yaron A counterexample to Viterbo’s conjecture (2024) | arXiv

[Hut13] Hutchings, Michael Update on the short Reeb orbit conjecture, 2013 (https://floerhomology.wordpress.com/2013/03/15/update-on-the-short-...)

[JN83] Jankins, Mark; Neumann, Walter D. Lectures on Seifert manifolds, Brandeis lecture notes, 2, Brandeis University, 1983 | MR

[Kat07] Katz, Mikhail Gersh Systolic geometry and topology, Mathematical Surveys and Monographs, 137, American Mathematical Society, 2007 (with an appendix by Jake P. Solomon) | DOI | MR | Zbl

[LS23] Lange, Christian; Soethe, Tobias Sharp systolic inequalities for rotationally symmetric 2-orbifolds, J. Fixed Point Theory Appl., Volume 25 (2023) no. 1, 41, 30 pages | DOI | MR | Zbl

[Lut77] Lutz, Robert Structures de contact sur les fibrés principaux en cercles de dimension trois, Ann. Inst. Fourier, Volume 27 (1977) no. 3, pp. 1-15 | Numdam | DOI | MR | Zbl

[MvK22] Moreno, Agustin; van Koert, Otto Global hypersurfaces of section in the spatial restricted three-body problem, Nonlinearity, Volume 35 (2022) no. 6, pp. 2920-2970 | MR | DOI | Zbl

[RZ21] Rosen, Daniel; Zhang, Jun Relative growth rate and contact Banach–Mazur distance, Geom. Dedicata, Volume 215 (2021), pp. 1-30 | DOI | MR | Zbl

[SH19] Salomão, Pedro A. S.; Hryniewicz, Umberto L. Global surfaces of section for Reeb flows in dimension three and beyond, Proceedings of the International Congress of Mathematicians (ICM 2018). Volume II. Invited lectures, World Scientific; Sociedade Brasileira de Matemática (2019), pp. 941-967 | MR | DOI | Zbl

[Săg21] Săglam, Murat Contact forms with large systolic ratio in arbitrary dimensions, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), Volume 22 (2021) no. 3, pp. 1265-1308 | MR | DOI | Zbl

[Tau07] Taubes, Clifford Henry The Seiberg–Witten equations and the Weinstein conjecture, Geom. Topol., Volume 11 (2007) no. 4, pp. 2117-2202 | MR | DOI | Zbl

[Vit00] Viterbo, Claude Metric and isoperimetric problems in symplectic geometry, J. Am. Math. Soc., Volume 13 (2000) no. 2, pp. 411-431 | MR | DOI | Zbl

[Wad75] Wadsley, A. W. Geodesic foliations by circles, J. Differ. Geom., Volume 10 (1975) no. 4, pp. 541-549 | MR | DOI | Zbl

[ÁPB14] Álvarez Paiva, Juan Carlos; Balacheff, Florent Contact geometry and isosystolic inequalities, Geom. Funct. Anal., Volume 24 (2014) no. 2, pp. 648-669 | MR | DOI | Zbl

[ÁPT04] Álvarez Paiva, Juan Carlos; Thompson, Anthony C. Volumes on normed and Finsler spaces, A sampler of Riemann–Finsler geometry (Mathematical Sciences Research Institute Publications), Volume 50, Cambridge University Press, 2004, pp. 1-48 | Zbl