Metadata
Abstract
We completely classify the locally finite, infinite graphs with pure mapping class groups admitting a coarsely bounded generating set. We also study algebraic properties of the pure mapping class group. We establish a semidirect product decomposition, compute first integral cohomology, and classify when they satisfy residual finiteness and the Tits alternative. These results provide a framework and some initial steps towards quasi-isometric and algebraic rigidity of these groups.
References
[ADMQ90] Proper homotopy classification of graphs, Bull. Lond. Math. Soc., Volume 22 (1990) no. 5, pp. 417-421 | DOI | MR | Zbl
[AFV08] A presentation for , J. Group Theory, Volume 11 (2008) no. 2, pp. 267-276 | DOI | MR | Zbl
[AHL + 21] Finding and Combining Indicable Subgroups of Big Mapping Class Groups (2021) | arXiv | Zbl
[AKB21] Groups of proper homotopy equivalences of graphs and Nielsen realization (2021) (to appear in Contemporary Mathematics) | arXiv
[All21] Most big mapping class groups fail the Tits alternative, Algebr. Geom. Topol., Volume 21 (2021) no. 7, pp. 3675-3688 | DOI | MR | Zbl
[APV20] The first integral cohomology of pure mapping class groups, Int. Math. Res. Not., Volume 2020 (2020) no. 22, pp. 8973-8996 | DOI | MR | Zbl
[Bau63] Automorphism groups of residually finite groups, J. Lond. Math. Soc., Volume 38 (1963), pp. 117-118 | DOI | MR | Zbl
[BBP23] The mapping class group of connect sums of , Trans. Am. Math. Soc., Volume 376 (2023) no. 4, pp. 2557-2572 | DOI | MR | Zbl
[BDR20] Isomorphisms between big mapping class groups, Int. Math. Res. Not., Volume 2020 (2020) no. 10, pp. 3084-3099 | DOI | MR | Zbl
[BFH00] The Tits alternative for . I. Dynamics of exponentially-growing automorphisms, Ann. Math. (2), Volume 151 (2000) no. 2, pp. 517-623 | DOI | MR | Zbl
[BFH04] Solvable subgroups of are virtually Abelian, Geom. Dedicata, Volume 104 (2004), pp. 71-96 | DOI | MR | Zbl
[BFH05] The Tits alternative for . II. A Kolchin type theorem, Ann. Math. (2), Volume 161 (2005) no. 1, pp. 1-59 | DOI | MR | Zbl
[BKMM12] Geometry and rigidity of mapping class groups, Geom. Topol., Volume 16 (2012) no. 2, pp. 781-888 | DOI | MR | Zbl
[BKP19] On the smallest non-abelian quotient of , Proc. Lond. Math. Soc. (3), Volume 118 (2019) no. 6, pp. 1547-1591 | DOI | MR | Zbl
[BLM83] Abelian and solvable subgroups of the mapping class groups, Duke Math. J., Volume 50 (1983) no. 4, pp. 1107-1120 | DOI | MR | Zbl
[BV00] Automorphisms of automorphism groups of free groups, J. Algebra, Volume 229 (2000) no. 2, pp. 785-792 | DOI | MR | Zbl
[Can11] Sur les groupes de transformations birationnelles des surfaces, Ann. Math. (2), Volume 174 (2011) no. 1, pp. 299-340 corrected version (2012) available from https://perso.univ-rennes1.fr/serge.cantat/Articles/cremona_long.pdf | DOI | MR | Zbl
[DHK23] Coarse geometry of pure mapping class groups of infinite graphs, Adv. Math., Volume 413 (2023), 108836 | DOI | MR | Zbl
[Din12] Tits alternative for automorphism groups of compact Kähler manifolds, Acta Math. Vietnam., Volume 37 (2012) no. 4, pp. 513-529 | MR | Zbl
[DP20] First cohomology of pure mapping class groups of big genus one and zero surfaces, New York J. Math., Volume 26 (2020), pp. 322-333 | MR | Zbl
[Dud61] Continuity of homomorphisms, Duke Math. J., Volume 28 (1961) no. 4, pp. 587-594 | DOI | MR | Zbl
[FH07] Commensurations of , Publ. Math., Inst. Hautes Étud. Sci., Volume 105 (2007), pp. 1-48 | DOI | Numdam | MR | Zbl
[GP08] Groups of intermediate growth: An introduction, Enseign. Math. (2), Volume 54 (2008) no. 3-4, pp. 251-272 | MR | Zbl
[Gri80] On Burnside’s problem on periodic groups, Funkts. Anal. Prilozh., Volume 14 (1980) no. 1, pp. 53-54 | MR | Zbl
[Gro75] On the residual finiteness of certain mapping class groups, J. Lond. Math. Soc. (2), Volume 9 (1974/75), pp. 160-164 | DOI | MR | Zbl
[Har86] The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math., Volume 84 (1986) no. 1, pp. 157-176 | DOI | MR | Zbl
[Hat95] Homological stability for automorphism groups of free groups, Comment. Math. Helv., Volume 70 (1995) no. 1, pp. 39-62 | DOI | MR | Zbl
[Hat02] Algebraic Topology, Cambridge University Press, 2002 | MR | Zbl
[Hil23] Large-Scale Geometry of Pure Mapping Class Groups of Infinite-Type Surfaces (2023) | arXiv
[HMV18] Isomorphisms between curve graphs of infinite-type surfaces are geometric, Rocky Mt. J. Math., Volume 48 (2018) no. 6, pp. 1887-1904 | DOI | MR | Zbl
[HV98] Rational homology of , Math. Res. Lett., Volume 5 (1998) no. 6, pp. 759-780 | DOI | MR | Zbl
[HV04] Homology stability for outer automorphism groups of free groups, Algebr. Geom. Topol., Volume 4 (2004), pp. 1253-1272 | DOI | MR | Zbl
[HW20] Commensurations of subgroups of , Trans. Am. Math. Soc., Volume 373 (2020) no. 4, pp. 2699-2742 | DOI | MR | Zbl
[Iva84] Algebraic properties of the Teichmüller modular group, Dokl. Akad. Nauk SSSR, Volume 275 (1984) no. 4, pp. 786-789 | MR | Zbl
[Iva88] Automorphisms of Teichmüller modular groups, Topology and geometry — Rohlin Seminar (Viro, Oleg Y.; Vershik, Anatoly M., eds.) (Lecture Notes in Mathematics), Volume 1346, Springer, 1988, pp. 199-270 | DOI | MR | Zbl
[Iva97] Automorphism of complexes of curves and of Teichmüller spaces, Int. Math. Res. Not., Volume 1997 (1997) no. 14, pp. 651-666 | DOI | MR | Zbl
[Khr90] Completeness of groups of outer automorphisms of free groups, Group-theoretic Investigations (Russian), Akad. Nauk SSSR Ural. Otdel., Sverdlovsk, 1990, pp. 128-143 | MR | Zbl
[Lau74] Topologie de la dimension trois: homotopie et isotopie, Astérisque, 12, Société Mathématique de France, 1974 | Numdam | MR | Zbl
[LL20] Centers of subgroups of big mapping class groups and the Tits alternative, Glas. Mat., III. Ser., Volume 55(75) (2020) no. 1, pp. 85-91 | DOI | MR | Zbl
[Mal58] On homomorphisms onto finite groups, Uch. Zap. Ivanov. Gos. Pedagog Inst., Volume 18 (1958), pp. 49-60 english translation in: Translations. Series 2. American Mathematical Society, 119 (1983) 67-79. | Zbl
[McC85] A “Tits-alternative” for subgroups of surface mapping class groups, Trans. Am. Math. Soc., Volume 291 (1985) no. 2, pp. 583-612 | DOI | MR | Zbl
[McC86] Automorphisms of surface mapping class groups. A recent theorem of N. Ivanov, Invent. Math., Volume 84 (1986) no. 1, pp. 49-71 | DOI | MR | Zbl
[McK77] Automorphism groups of denumerable Boolean algebras, Can. J. Math., Volume 29 (1977) no. 3, pp. 466-471 | DOI | MR | Zbl
[Mon75] On the automorphism groups of denumerable Boolean algebras, Math. Ann., Volume 216 (1975), pp. 5-10 | DOI | MR | Zbl
[MR23] Large-scale geometry of big mapping class groups, Geom. Topol., Volume 27 (2023) no. 6, pp. 2237-2296 | DOI | MR | Zbl
[Nie24] Die Isomorphismengruppe der freien Gruppen, Math. Ann., Volume 91 (1924) no. 3-4, pp. 169-209 | DOI | MR | Zbl
[PV18] Algebraic and topological properties of big mapping class groups, Algebr. Geom. Topol., Volume 18 (2018) no. 7, pp. 4109-4142 | DOI | MR | Zbl
[Ros22] Coarse geometry of topological groups, Cambridge Tracts in Mathematics, 223, Cambridge University Press, 2022 | DOI | MR | Zbl
[SC24] Graphs of curves and arcs quasi-isometric to big mapping class groups, Groups Geom. Dyn., Volume 18 (2024) no. 2, pp. 705-735 | DOI | MR | Zbl
[Uda24] The sphere complex of a locally finite graph (2024) | arXiv | Zbl
[Use] Is residually finite?, Mathematics Stack Exchange https://math.stackexchange.com/q/57867 (version: 2011-08-17)